3D printing for medical uses


Medical Applications of 3D Printing

3D printers are used to manufacture a variety of medical devices, including those with complex geometry or features that match a patient’s unique anatomy.

Some devices are printed from a standard design to make multiple identical copies of the same device. Other devices, called patient-matched or patient-specific devices, are created from a specific patient’s imaging data.

Commercially available 3D printed medical devices include:

  • Instrumentation (e.g., guides to assist with proper surgical placement of a device),
  • Implants (e.g., cranial plates or hip joints), and
  • External prostheses (e.g., hands).

Scientists are researching how to use the 3D printing process to manufacture living organs such as a heart or liver, but this research is in early stages of development.

The 3D printing process can be accomplished using any of several different technologies. The choice of technology can depend on many factors including how the final product will be used and how easy the printer is to use. The most common technology used for 3D printing medical devices is called powder bed fusion. Powder bed fusion is commonly used because it works with a variety of materials used in medical devices, such as titanium and nylon.

FDA Powder Bed Fusion Printer

The powder bed fusion process builds a three-dimensional product from very fine metal or plastic powder, which is poured onto a platform and leveled carefully. A laser or electron beam then moves across the powder layer and melts the material it touches. Melted material fuses to the layer below it and to the powder around it to create a solid. Once a layer is completed, the platform moves down and one more layer of carefully leveled powder is placed on top.

The FDA has several 3D printers that help us better understand the capabilities of 3D printing of medical devices and the public health benefit of this technology. For example, the FDA has printers that use different printing technologies, including powder bed fusion, to evaluate what parts of the printing processes and workflows are critical to ensure quality of the finished medical device.

Patient-matched devices

While 3D printers are often used to create identical copies of the same device, they can also be used to create devices unique to a specific patient. Patient-matched (or patient-specific) devices are created specifically for the patient based on individual features, such as anatomy. They can be based on a template model that is matched to a patient using medical imaging. Patient-matching can be accomplished by techniques such as scaling of the device using one or more anatomic features from patient data. 

The FDA regulates 3D printed medical devices through the same pathways as traditional medical devices; therefore they are evaluated according to the safety and effectiveness information submitted to us by the manufacturer. While traditionally manufactured medical devices come in discrete sizes, patient-matched devices can be made in a continuous range of shapes with pre-defined minimum and maximum specifications that we can use to review the devices in the same way as standard sized devices. For instance, the specification may define a minimum and maximum wall thickness or how sharp a curve can be to maintain device performance for its intended use.

There is a provision in federal law that exempts “custom” medical devices from FDA review, but patient-matched devices do not automatically meet all the requirements. For further information on custom device exemptions, please refer to the Custom Device Exemptions guidance.

Other uses of 3D printing

The use of 3D printing is not limited to medical devices. Other industries and government departments are also interested in its use. For instance, the U.S. Department of Energy (DOE) is investing resources to study 3D printing, and how it can be used to reduce waste by using fewer raw materials and require fewer manufacturing steps. DOE has compiled information on how 3D printing works, the different types of printers and for what they are used. For more information on how 3D printers work and the different printing technologies, visit the DOE’s How 3D Printers Work webpage.

Contributed: Top 8 healthcare uses for 3D printing

New technology developments have enabled healthcare advances in 3D printing with an estimated $6.08 billion by 2027 in terms of software, hardware, services and materials. The technology has given a boost to customized medicine, allowing a more accurate understanding of patient symptoms and treatment, and generating increased efficiency in the operating room (OR). Advent of 3D printing technology is leaving its mark in specialties such as orthopedics, pediatrics, radiology and oncology, as well as in cardiothoracic and vascular surgery.

Doctors, hospitals and researchers around the world are using 3D printing for:

  • preoperative planning and customized surgery.
  • medical devices and surgical instruments.
  • molds, prostheses and customizable implants.
  • 3D digital dentistry and drug administration.

1. Preoperative planning

3D printing allows specialists to create reference models using MRI scans and CT in order to help surgeons prepare better for surgeries.

In 2016, a child in Northern Ireland had two unhealed bones injuries his forearm. The child could not rotate his arm more than 50% and was suffering from increased pain. CT scanning and X-rays showed deformed bones, and the treatment required an osteotomy – a four-hour invasive surgery in which the surgeon reshapes the bones to improve rotation. However, the surgeon, printed a 3D model that changed the diagnosis, the surgical intervention and the recovery of the patient:

  • It was the tight structures between the bones and not the shape of the bones that limited the child’s rotation ability.
  • The procedure was completed in less than 30 minutes, instead of four hours.
  • The patient was able to gain 90% arm-range movement four weeks after the intervention.
  • The recovery time, the post-operation pain and the scarring decreased considerably.

Such 3D printing is changing preoperative planning which translates into less time spent in the OR, better surgery outcomes for the patients, faster post-op recovery and lower costs for hospitals.

2. Customized surgery

Due to decreased costs of 3D printers and increased availability of CAD/CAM medical software, more hospitals are creating in-house 3D-printed anatomical models. The process entails several steps:

  • MRI and CT scans are processed in a stage known as segmentation.
  • Each organ and body part type is modeled.
  • Models are translated into STL file formats, arranged for printing and sent to the 3D printer.

Rady Children’s Hospital created its own 3D Innovations Laboratory for printing 3D models, including models that mimic human tissue such as airways, hearts and bones. In 2019, the hospital admitted a 7-year-old child born with a single functional heart ventricle (instead of the normal two). The medical team created a 3D-printed model that detailed every vein, artery and valve of the child’s heart, which enabled surgeons to identify the location where blood flow needed rerouting.

Anatomical models that are 3D-printed enable surgeons to plan the operation efficiently and establish better treatment solutions, decrease the operation's duration, and improve research and training for medical students.

3. Designing medical devices

In order to serve their purpose, medical devices must meet several requirements:

  • They need to comprise the perfect balance in terms of size and weight.
  • The must match the particular shapes of the human body.
  • They have to be functional, and they have to pass specific endurance tests.

Producing medical device to meet these criteria traditionally required extensive time. The alternative found by medical device manufacturers was stereolithography – a process in which a moving laser beam controlled by computer builds the required structure layer by layer. Thus 3D printing has been used to create the prototype of an inhaler, including the needed fixtures and jigs, aiming to:

  • Reduce production from one to two weeks to one to two days.
  • Reduce cost 90% (from £250 to £11 or $343 to $15).

4. Improving surgical instruments

Customized 3D-printed surgical instruments such as scalpel handles, forceps or clamps help surgeons perform better in the OR, reduce operating time and promote better surgical outcomes for the patients.

Manufactured from materials such as stainless steel, nylon, titanium alloys or nickel, customized surgical instruments are well suited for sterilization. Endocon GmbH – a German medical device producer – has used metal 3D printing to create an alternative surgical tool for hip cup removal. This is traditionally a 30-minute procedure performed with a chisel, but the chisel can sometimes damage the tissue and bones, which results in an uneven surface, making the insertion of a new hip implant difficult.

Endocon’s stainless steel alloy 3D-printed blades, called endoCupcut, enabled precise cutting along the acetabular cup in three minutes and decreased the rejection rate for the replacement, while reducing production time and cost.

5. Creating prostheses

While simple prostheses are available in predefined sizes, customized bionic prostheses cost thousands of dollars. This situation affects many children who outgrow their prostheses and need customized replacement parts, which are produced by a handful of manufacturers.

In 2016, Lyman Connor and Eduardo Salcedo created the Lyman’s Mano-matic prosthesis to provide bionic prosthetics to those who need them and cannot afford them. Globally, prostheses designers can use 3D printing to overcome the financial obstacles and time line constraints entailed by this process. The costs of this manufacturing method are significantly lower than traditional methods, and the prostheses are ready in approximately two weeks, making 3D printing a viable solution for customized bionic devices that replicate a human limb's motions and grips.

6. 3D-printed implants

Metal 3D printing enables medical devices designers to produce implants that perform better, match better and last longer, for knees, spine, skull or hips.

Electron Beam Melting (EBM) is a technology that melts a metal powder layer by layer with the help of an electron beam, thus generating high-accuracy parts. These orthopedic implants provide spongy structures that mimic regular bone tissue, resulting in a higher percentage of osseointegration – the in-growth of a bone into a metal implant.

In 2016, a patient suffering from a tumor that eroded five of his vertebrae was admitted to Peking University Third Hospital. The tumor, caused by a rare form of malignant chordoma, could be removed only through surgery. However, the healing of the extended size bones defects might not have been completely and correctly possible once the lesion would have been removed.

To address this challenge, researchers designed five artificial vertebrae similar to the body structure of the patient using EBM technology. The prosthesis enabled increased stability of the spine, reducing pain and increasing the durability of the device, which allowed the patient to walk without braces two months after the surgical intervention.

Customized 3D printed implants represent a flexible solution for difficult orthopedic cases and may generate more treatment opportunities in the future.

7. 3D Digital Dentistry

A recent report indicates that, by 2022, cumulative manufacturing will produce around 500 million dentistry devices and restorations every year, with an estimated $9 billion for the entire dental segment by 2028.

In the dental industry, 3D printing is used for the manufacturing of dentures, surgical guides, bridge models and, most of all, for clear aligners – invisible devices that straighten teeth.

Compared to metal braces, clear aligners are actually invisible and can be taken off when the wearers need to brush their teeth or eat. The traditional production method of clear aligners is a combination of manual and milling processes that requires time and effort. The 3D printing technique speeds up the process, since customized molds for clear aligners can be manufactured directly from digital scans of patients.

Looking for cost-efficient solutions, one dental start-up has perfected an easy process to produce molds for clear aligners:

  • Customers take impressions of their teeth with an at-home impression kit or an intraoral scan at a specialized center.
  • Impressions and scans are checked by a dental professional, who creates a plan for treatment.
  • The company then sends the 3D-printed aligners to the customers.

Therefore 3D printing is a cost-effective method to produce clear aligners, since the setup and tools are not expensive, and their customization is, as proven, direct and simple. 

8. Streamlining drug administration

3D printing can also simplify drug administration with the help of 3D-printed pills. Polypill is a concept designed for patients suffering from several affections, containing five different drugs compartments and two separate release profiles.

Patients affected by several health issues often take their medication at different hours within the day, and this can be confusing in setting a schedule. This 3D printed pill handles both medication dosage and potential interactions between drugs treating different conditions, so eliminating the need for this scheduling and close monitoring.

The administration of a single customized pill to treat several ailments has multiple advantages:

  • increased medication adherence to prescribed treatments.
  • customized medication or drug combinations.
  • lower production costs, due to the ability to treat more affections at the same time.
  • greater accessibility in developing countries to affordable and efficient drugs.

Conclusion

As the price of high-performance 3D printers decreases, more medical professionals use 3D printing to produce cost-efficient customized devices in short periods of time, to design patient-tailored anatomical models, to identify revolutionizing clinical solutions and to create new treatments adapted to patients’ needs.

The advances in 3D-printing technology will attract more customized care and more high-precision medical instruments. At the same time, 3D printing is expected to make an impact in other medical specialties such as ophthalmology, regenerative medicine and bio-printing.


About the Author

 

Dr. Liz Kwo a serial healthcare entrepreneur, physician and Harvard Medical School faculty lecturer. She received an MD from Harvard Medical School, an MBA from Harvard Business School and an MPH from the Harvard T.H. Chan School of Public Health.

5 Innovative Medical Applications for 3D Printing

Personalized and precise medical solutions are gaining popularity. New tools and advanced technologies bring doctors closer to patients by providing treatments and devices that meet the needs of each individual.

The expansion of 3D printing technology in healthcare has made a huge contribution to improving the quality of medical services. With new tools and treatment approaches developed using 3D printing, patients feel that their treatment becomes more comfortable and personal. For physicians, the new technology available allows them to better analyze complex cases and provides new tools that can ultimately raise standards of care.

Later in this article, you'll learn about five areas, from models for surgical planning to vascular systems and bioreactors, in which 3D printing is used in healthcare, and why many healthcare professionals see great potential in this technology.

In today's medical practice, 3D printed anatomical models based on patient body scans are becoming more indispensable tools, as they provide more personalized and accurate treatment. As cases become more complex and standard case times become more important, visual and tactile anatomical models are helping surgeons to better understand their task, communicate more effectively, and communicate with patients more easily.

Medical professionals, hospitals and research institutions around the world use 3D printed anatomical models as a reference tool for preoperative planning, intraoperative imaging, and for sizing medical instruments or presetting equipment for both standard and very complex procedures, which is reflected in hundreds of scientific publications.

3D printing makes 3D printing affordable and easy to create customized patient anatomical models based on CT and MRI data. The peer-reviewed scientific literature demonstrates that they help clinicians better prepare for surgery, resulting in significant cost and time savings. At the same time, patient satisfaction is also increased through reduced anxiety and reduced recovery time.

Physicians can use individual patient anatomical models to explain the procedure to the patient, making it easier to obtain patient consent and reduce patient anxiety.

Preparation for surgery using preoperative models can also affect the effectiveness of the treatment. The experience of Dr. Michael Ames confirms this. After obtaining bone replications from the young patient's forearm, Dr. Ames realized that the injury was different from what he expected.

Based on this information, Dr. Ames chose a new soft tissue procedure that was much less invasive, reduced downtime, and resulted in much less scarring. Using imprinted bone replication, Dr. Ames explained the procedure to the young patient and his parents and obtained their consent.

Physicians can use patient-specific surgical models to explain the procedure beforehand, improving patient consent and lowering anxiety.

Result? The operation lasted less than 30 minutes instead of the originally planned three hours. With this reduction in operating time, the hospital avoided a cost of about $5,500 and the patient recovered faster.

According to Dr. Alexis Dang, Orthopedic Surgeon at UC San Francisco and Veterans Affairs Medical Center San Francisco: “All of our full-time orthopedic surgeons and nearly all of our full-time surgeons part-time, used 3D printed models to treat patients at a Veterans Medical Center in San Francisco. We could all see that 3D printing improves the efficiency of our work.”

The advent of new biocompatible medical polymers for 3D printing has opened up opportunities for the development of new surgical instruments and techniques to further improve clinical operating procedures. These include sterilizable trays, contoured surgical guides, and implant models that can be used to determine the size of an implant prior to surgery, helping surgeons reduce time and improve accuracy in complex procedures.

Anatomical model of a hand with elastic resin skin for 3D printing.

Todd Goldstein, PhD, lecturer at the Feinstein Institute for Medical Research, is unequivocal about the importance of 3D printing technology to the work of his department. He estimates that if Northwell used 3D-printed models 10-15% of the time, it could save $1,750,000 a year.

“Whether it's prototyping medical devices, complex anatomical models for our children's hospital, designing training systems, or making surgical templates for dental clinics, [3D printing technology] has increased our capabilities and reduced our costs in a variety of areas. In doing so, we were able to produce instruments for treating patients that would be almost impossible to recreate without our sought-after stereolithography 3D printer,” says Goldstein.

3D printing has become virtually synonymous with rapid prototyping. The ease of use and low cost of 3D printing in-house has also revolutionized product development, with many medical instrument manufacturers adapting the technology to produce entirely new medical devices and surgical instruments.

Over 90 percent of the top 50 medical device companies use 3D printing to create accurate medical device prototypes and fixtures and fittings to simplify testing.

According to Alex Drew, Principal Mechanical Engineer at DJO Surgical, an international medical device supplier, “Before DJO Surgical purchased [Formlabs' 3D printer], we printed nearly all of our prototypes outsourced. Today we are working with four Formlabs printers and are very pleased with the results. The speed of 3D printing has doubled, the cost has been reduced by 70%, and the level of detail allows you to effectively coordinate designs with orthopedic surgeons.

Medical companies such as Coalesce are using 3D printing to create accurate medical device prototypes.

3D printing helps speed up the design process by allowing complex designs to be iterated over in days instead of weeks. When Coalesce was tasked with building an inhaler device that could digitally evaluate an asthma patient's inspiratory flow profile, outsourcing would result in a significant increase in production time for each prototype. Before sending the project files to a third party company for the physical implementation of the project, they would have to be carefully developed and carried through various iterations.

Instead, desktop stereolithographic 3D printing allowed Coalesce to handle the entire prototyping process in-house. The prototypes were suitable for use in clinical trials and looked just like the finished product. Moreover, when the company demonstrated the device, its customers mistook the prototype for the final product.

Overall, the introduction of in-house manufacturing resulted in an exceptional reduction in prototyping time by 80–90%. In addition, the models took only eight hours to print and were finished and painted in a matter of days, while outsourcing the same process would take a week or two.

Hundreds of thousands of people lose limbs every year, but only a fraction of them are able to restore limb function with a prosthesis.

Conventional dentures are only available in a few sizes, so patients must adjust to what fits best. On the other hand, custom bionic prostheses that mimic the movements and grips of a real limb based on the impulses of the surviving limb muscles are so expensive that they can only be used by patients living in developed countries with the best medical insurance. In the case of children's prostheses, the situation is aggravated even more. Children grow up and inevitably outgrow their prostheses, which, as a result, require costly modifications.

The difficulty lies in the lack of manufacturing processes that would allow for individual orders at an affordable price. But increasingly, prosthetists are looking to reduce these high financial barriers to rehabilitation with the flexible design capabilities of 3D printing.

Initiatives like e-NABLE allow people around the world to learn about the possibilities of 3D printed prostheses. They are driving an independent movement in the prosthesis industry by offering information and free open source projects so that patients can get a custom-designed prosthesis for as little as $50.

Other inventors, such as Lyman Connor, go even further. With only a small fleet of four desktop 3D printers, Lyman was able to fabricate and customize his first mass-produced prostheses. His ultimate goal? Create a customizable fully bionic arm that will cost incomparably less than similar prostheses that retail for tens of thousands of dollars.

Researchers at the Massachusetts Institute of Technology have also found that 3D printing is the best method for making more comfortable prosthetic sockets.

In addition, the low cost of manufacturing these prostheses, as well as the freedom that comes with being able to design custom designs, speak for themselves. 3D printed prostheses have a lead time of just two weeks, and then they can be tried and serviced at a much lower cost than traditional counterparts.

As costs continue to fall and material properties improve, the role of 3D printing in healthcare will no doubt become more important.

The same high financial barriers that are seen in prosthetics are common in orthoses and insoles. Like many other patient-specific medical devices, custom-made orthoses are often not available due to their high cost and take weeks or months to manufacture. 3D printing solves this problem.

Confirmation is the example of Matej and his son Nick. Nick was born in 2011. Complications during preterm birth led to the fact that he developed cerebral palsy, a pathology that affects nearly twenty million people worldwide. Matei was delighted with how determined his son was to overcome the limitations of his illness, but he was faced with a choice between a standard, off-the-shelf orthosis that would be uncomfortable for his son, or an expensive custom solution that would take weeks or months to manufacture and ship. , and from which the child would quickly grow.

He decided to take matters into his own hands and began to look for new ways to achieve his goal. Thanks to the opportunities provided by digital technologies, in particular 3D scanning and 3D printing, Matei and Nika's physiotherapists were able to develop a completely new innovative workflow for the manufacture of ankle orthoses through experiments.

The resulting 3D-printed, custom-fit orthosis that provides support, comfort, and motion correction helped Nick take his first steps on his own. This non-standard orthopedic device reproduced the functionality of the highest-class orthopedic products, at the same time it cost many times less and did not require any additional settings.

Professionals around the world are using 3D printing as a new method of manufacturing custom insoles and orthoses for patients and clients, as well as a range of other physiotherapy tools. In the past, undergoing a course of physiotherapy with the use of individual physiotherapy instruments carried many difficulties. Often there was a situation when patients had to wait a long time for a finished product, which at the same time did not provide proper comfort. 3D printing is step by step changing this status quo. Data confirms that 3D printed insoles and orthoses offer a more precise fit and lead to better therapeutic outcomes, which means greater comfort and benefit for patients.

The usual treatments for patients with severe organ damage today are autografts, transplantation of tissue from one area of ​​the body to another, or transplantation of a donor organ. Researchers in bioprinting and tissue engineering hope to expand this list soon with on-demand fabrication of tissues, blood vessels, and organs.

3D bioprinting is an additive manufacturing process that uses materials known as bioink (a combination of living cells and a compatible substrate) to create tissue-like structures that can be used in medicine. Tissue engineering combines new technologies, including bioprinting, which make it possible to grow replacement tissues and organs in the laboratory for use in the treatment of injuries and diseases.

Using high-precision 3D printing, researchers such as Dr. Sam Pashne-Tala from the University of Sheffield are opening up new possibilities for tissue engineering.

In order to direct cell growth to form the necessary tissue, Dr. Pashne-Tala grows living cells on a laboratory scaffold that provides a template of the required shape, size and geometry. For example, to create a blood vessel for a patient with cardiovascular disease, a tubular structure is needed. The cells will multiply and cover the scaffold, taking on its shape. Then the scaffold is gradually destroyed, and the living cells take the form of the target tissue, which is cultured in a bioreactor - a chamber that contains the cultured tissue and can reproduce the internal environment of the body so that the cultured tissue acquires the mechanical and biological characteristics of organic tissue.

3D printed bioreactor chamber with tissue engineered aorta miniature inside. The tissue is cultured in a bioreactor to acquire the mechanical and biological characteristics of the organic tissue.

3D printed bioreactor chamber with tissue engineered aorta miniature inside. The tissue is cultured in a bioreactor to acquire the mechanical and biological characteristics of the organic tissue.

This will allow scientists to design patient-specific vascular grafts, expand surgical care, and provide a unique platform for testing new vascular medical devices for people suffering from cardiovascular disease, which is currently the leading cause of death worldwide. The ultimate goal is to create blood vessels that are ready for implantation in patients. Since tissue engineering uses cells taken from a patient in need of treatment, this eliminates the possibility of rejection by the immune system, which is the main problem of modern transplantology.

3D printing has proven its ability to solve the problems that exist in the production of synthetic blood vessels, in particular, the difficulty of recreating the required accuracy of the shape, size and geometry of the vessel. The ability of printed solutions to clearly reflect the specific characteristics of patients was a step forward.

According to Dr. Pashne-Tal: “[Creating blood vessels using 3D printing] makes it possible to expand the possibilities of surgical care and even create designs of blood vessels for a specific patient. Without the existence of high-precision affordable 3D printing, the creation of such forms would not be possible.”

We are witnessing significant advances in the development of biological materials that can be used in 3D printers. Scientists are developing new hydrogel materials that have the same consistency as organ tissues present in the human brain and lungs, which can be used in a range of 3D printing processes. Scientists hope that they will be able to implant them into the body as a "scaffold" for cell growth.

Although bioprinting of fully functional internal organs such as the heart, kidneys and liver still looks futuristic, hybrid 3D printing at very high speed opens up more and more new horizons.

It is expected that sooner or later the creation of biological matter on laboratory printers will lead to the generation of new, fully functional 3D printed organs. In April 2019, scientists at Tel Aviv University 3D-printed the first heart using biological tissue from a patient. A tiny copy was created using the patient's own biological tissues, which made it possible to fully match the immunological, cellular, biochemical and anatomical profile of the patient.

“At this stage, the heart we printed is small, about the size of a rabbit heart, but normal-sized human hearts require the same technology,” says Prof. Tal Dvir.

The first 3D bioprinted heart created at Tel Aviv University.

Precise and affordable 3D printing processes, such as desktop stereolithography, are democratizing access to technology, enabling healthcare professionals to develop new clinical solutions and quickly produce medical devices with individual characteristics, and doctors around the world to offer new types of therapy.

As 3D printing technologies and materials improve, it will continue to expand personalized treatment and deliver high performance medical devices.

Learn more about 3D printing applications in healthcare

3D printing applications in medicine

3D printing technology was born from the discovery of American inventor Charles Hull in 1983 and gradually spread to all areas of production.

The technology has been used in global healthcare since the 2000s. Since then, the use of 3D Printing for medical purposes has evolved significantly. What has happened in these 30 years in the industry, what changes have made scientists believe in solving the most difficult problems of medicine?

  1. The first 3D printers.

    Shortly after filing a patent for a 3D printing device, Halla 3D Systems released the first 3D printer for sale (1988). Due to high equipment costs, first the right large industrial corporations have registered to use the technology, but investments are quickly paid off, and 3D printing began to be used in architecture, education, cartography and retail.

    History of 3D printing

    During the manufacture of small plastic parts for a future prototype, instead of fixing ultraviolet radiation of individual thin layers of photosensitive polymers, C. Hull stacked thousands of even thinner layers of plastic on top of each other, and on each such layer applied epoxy resin, which was previously used to make coatings, and the shape already obtained fixed with ultraviolet light. As a result of the experiment, it became clear that the principle of layered superimposition and gluing plastic will allow you to create three-dimensional objects of any shape.

  2. The technology was first applied in medicine.

    In 1999, a group of scientists and doctors from the Institute of Regenerative Medicine Wake Forest (USA) implanted in the patient an organ grown in the laboratory on the basis of the patient's own cells. The operation set a precedent for creating an exact copy using computed tomography and a 3D printer organ of the patient - the bladder.

  3. A functioning liver has been created.

    Scientists from the Wake Forest Institute have created a functioning liver based on bio-ink. This time they are not they simply printed a base for overlaying living tissue, but accurately reproduced liver tissue. Although the body is not transplanted, the experiment was an impressive confirmation of the concept of printing organs and tissues.

  4. 3D printed instruments for surgeons invented

    From 2006 to 2014, we invented and put into practice surgical instruments: anatomical 3D models, teaching aids, implants and custom made prostheses.

    3D model for neurosurgical planning (Walter M.I.C. Reid). Photo source: NCBI

  5. Facial reconstruction surgery performed.

    In 2014, Swansea surgeons reconstructed the face of a motorcyclist who suffered serious injuries in a road accident. Stephen Power became the first patient in the world with a craniofacial injury, for the treatment of which, at every stage, doctors used 3D printing.


Since then, we have regularly received news of successful implants or transplants. 3D printed bones and joints. Reports of the joint success of scientists, doctors and engineers come from China, USA, European countries.

How are technologies developing in Russia?

  • Nizhny Novgorod doctors of the Volga Federal Medical Research Center (FSBI "PFMIC" Ministry of Health of Russia) in 2016 performed two successful operations to implant hip prostheses joints printed on a 3D printer.
  • Specialists from the laboratory of Tomsk State University have invented a variant of bone tissue based on phosphorus and calcium. Scientists have suggested that tissue created from animal bones, and, therefore, biocompatible with the human body, capable of replacing titanium implants over time.
  • In the clinic at the St. Petersburg State Pediatric Medical University, successfully perform operations using simulated organs to prepare for intervention for malformations hearts. Now, instead of several complex operations, one will be needed to save the child - a long one, but less risky.
We think over the correct access, how to choose the tactics necessary for this operation, choose the type operations. Because with complex congenital heart defects with difficult hemodynamics, the details have colossal importance. And the correct approach to the operation will be either positive or negative result. Evgeny Kulemin, cardiac surgeon

What is 3D printing?

Three-dimensional printing, or additive technologies, is a manufacturing method in which solid three-dimensional objects are created by sequential layer-by-layer application of materials. plastic, metal, ceramics, powder, liquids and even living cells.

Additive manufacturing - the opposite of subtractive manufacturing and traditional methods, milling and cutting, where the appearance of the product is formed by removing excess, and not layered material connections.

Steps for creating a 3D object:

  • Modeling an object in a computer program
  • Seal
  • Post-processing

3 advantages of technology:

Printing speed, high accuracy and construction of the object in the desired geometric shape.

Create complex and anatomically accurate medical structures and translate them into 3D tangible objects made possible by the translation of 2D radiographic data, such as x-rays images, MRI (magnetic resonance imaging) or CT (computed tomography) images into digital files and further transformation of the virtual model into a solid three-dimensional product.

Why is 3D printing useful for medicine?

  • High-precision 3D printing of skeletal bones or areas of the brain with neoplasms helps doctors and students of medical universities to study the material, practice and plan surgical procedures.
  • Production of implants and prostheses to order according to the individual anatomical parameters of the patient simplifies the work of the doctor and increases the survival rate of the implant or prosthesis.
  • Creating new tissues and organs based on patient cells, or bioprinting, gives hope to doctors and patients to solve the problem of lack of donors and material for transplantation of organs and tissues.

    An ear grown from a patient's cells in the laboratory of the Wake Forest Institute. Photo Source: National Geographic

In the 16 years of 3D printing in medicine, doctors around the world have performed hundreds of successful surgeries, and scientists continue to explore the possibilities of technology.


Learn more