When was the 3d printer invented


When Was 3D Printing Invented? The History of 3D Printing -

May 15, 2020

When you first heard the words “3D printing” did you imagine a super futuristic technology, like in the movies but, when was it really invented?

While the term 3D printing may sound like something you’d expect to hear in a science fiction novel, the history of 3D printing, also known as additive manufacturing, is longer than you might think. 

Keep reading to learn about the history of 3D printing, and our BCN3D predictions on where we see this technology going in the future. 

The History of 3D Printing in 3 Phases

The 1980s: When Was 3D Printing Invented?

The first documented iterations of 3D printing can be traced back to the early 1980s in Japan. In 1981, Hideo Kodama was trying to find a way to develop a rapid prototyping system. He came up with a layer-by-layer approach for manufacturing, using a photosensitive resin that was polymerized by UV light.  

Although Kodama was unable to file the patent requirement of this technology, he is most often credited as being the first inventor of this manufacturing system, which is an early version of the modern SLA machine.

Across the world a few years later, a trio of French researchers was also seeking to create a rapid prototyping machine. Instead of resin, they sought to create a system that cured liquid monomers into solids by using a laser. 

Similar to Kodama, they were unable to file a patent for this technology, but they are still credited with coming up with the system.

That same year, Charles Hull, filed the first patent for Stereolithography (SLA). An American furniture builder who was frustrated with not being able to easily create small custom parts, Hull developed a system for creating 3D models by curing photosensitive resin layer by layer. 

In 1986 he submitted his patent application for the technology, and in 1988 he went on to found the 3D Systems Corporation. The first commercial SLA 3D printer, the SLA-1, was released by his company in 1988. 

But SLA wasn’t the only additive manufacturing process being explored during this time. 

In 1988, Carl Deckard at the University of Texas filed the patent for Selective Laser Sintering (SLS) technology. This system fused powders, instead of liquid, using a laser.

SLS fabrication machines in the Fundació CIM warehouse

Fused Deposition Modeling (FDM) was also patented around the same time by Scott Crump. FDM, also called Fused Filament Fabrication, differs from SLS and SLA in that rather than using light, the filament is directly extruded from a heated nozzle. FFF technology has gone on to become the most common form of 3D printing we see today.

These three technologies are not the only types of 3D printing methods that exist. But, they are the three that serve as the building blocks that would lay the groundwork for the technology to grow and for the industry to be disrupted.

1990-2010: Growth 

In the 90s, many companies and startups began popping up and experimenting with the different additive manufacturing technologies. In 2006, the first commercially available SLS printer was released, changing the game in terms of creating on-demand manufacturing of industrial parts.

CAD tools also became more available at this time, allowing people to develop 3D models on their computers. This is one of the most important tools in the early stages of creating a 3D print.

During this time, the machines were very different from those that we use now. They were difficult to use, expensive, and many of the final prints required a lot of post-processing. But innovations were happening every day and discoveries, methods, and practices were being refined and invented.

Then, in 2005, Open Source changed the game for 3D printing, giving people more access to this technology. Dr. Adrian Bowyer created the RepRap Project, which was an open-source initiative to create a 3D printer that could build another 3D printer, along with other 3D printed objects.

RepRapBCN in the middle of Fundacio CIM warehouse showing the RepRap Machines to visitors. 

In 2008, the first prosthetic leg was printed, propelling 3D printing into the spotlight and introducing the term to millions across the globe. 

Then, in 2009, the FDM patents filed in the 80s fell into the public domain, altering the history of 3D printing and opening the door for innovation. Because the technology was now more available to new companies and competition, the prices of 3D printers began to decrease and 3D printing became more and more accessible.

3D Printing Now

In the 2010s, the prices of 3D printers started to decline, making them available to the general public. Along with the lowering prices, the quality and ease of printing also increased. 

The materials that printers use have also evolved. Now there are a variety of plastics and filaments that are widely available. Materials like Carbon Fiber and Glass Fiber can also be 3D printed. Some creatives are even experimenting with printing materials like chocolate or pasta! 

In 2019, the world’s largest functional 3D printed building was completed. 3D printing is now consistently used in developing hearing aids and other healthcare applications, and many industries and sectors have adopted the technology into their everyday workflow.

It’s safe to say that the history of 3D printing is still being written.

Innovations and ideas are created every day. We’re very excited to see what’s next!

History of 3D Printing Timeline: Who Invented 3D Printing

3D Insider is ad supported and earns money from clicks, commissions from sales, and other ways.

The first 3D printer ever created was made in 1983 by Chuck Hull.

The 3D printing buzz began a few years ago, catching the attention of the wider public in a big way. The media played a huge role in making “3D printing” the latest watchword in technological innovation. They began to showcase the true potential of this fascinating industry on a frequent basis. Since then, 3D printing has taken the nation by storm. People love the idea of being able to create all kinds of custom products as and when they need them. Yet despite this recent phenomenon, 3D printing has been with us for a while. It’s been around for a lot longer than most people realize, that’s for sure. The aim of this guide is to walk you through the detailed history of 3D printing. We’ll start from its early beginnings up to the present day and beyond.

3D printing In Layman’s Terms

Before moving on, it’s important to define 3D printing in laymen’s terms for the uninitiated readers. If you already understand the workings of 3D technology, feel free to skip this section. For everyone else, it’ll pay you to read through it. Don’t worry; we’re not going to get too technical here.

You’ll often hear others refer to 3D printing as additive manufacturing (AM). The latter involves the whole process of making 3D solid objects from computer-generated files, or digital files. The actual 3D printing process is only one part of the entire procedure. Despite this, the two terms are largely interchangeable these days, so for the sake of simplicity we’ll use 3D printing most of the time.

So what is 3D printing exactly and why should you care?

3D printing technology has begun to revolutionize the way we produce entire physical objects and parts in the last few years. The range of things produced by 3D printing today is vast, and continues to get more ambitious. At the time of writing, we can 3D print anything from simple toys to clothing to tools. We can also use the technology to produce musical instruments and even human body parts. Yes, you did read that right. The potential, it seems, is endless.

How does 3D printing work exactly?

The best way to describe 3D printing is to look at how a regular inkjet printer works. First we create the computerized file, whatever form that’s in. This could be a word processor file, a spreadsheet, or an image, etc. Once our file is ready we upload it to the printer via the computer, and then press the ‘PRINT’ button. The printer then extrudes (forces) ink from a nozzle onto the paper. After a single print cycle, the end result is a two-dimensional representation of the digital file. 3D printing operates in a similar way. The main differences are with the materials used and extra print-cycles.

With 3D printing, you also need to upload a digital file to the printer. You’ll see these files referred to as 3D models, 3D computer graphics, CAD files, and more. Whatever they are, the 3D printer needs a file before it can print your design. 3D printing uses special types of ink, known as filaments. These can range from thermoplastics to metals, glass, paper and even wood substances. We’ll look more into 3D printing materials later. And the other main difference is that 3D printing has to go through many print cycles, or layers, to produce a physical object. This is where it gets the name ‘additive manufacturing’. As you can see, the print theories between inkjet and 3D are very similar.

What else do I need to know about 3D printing and printer technology?

The most exciting thing about 3D printing today is that it’s no longer the stuff of scientists, engineers, and scientific experiments. It’s becoming popular because of the rising demand from interested consumers. The result is smaller, easier to operate machines at much lower costs. Hobbyists and enthusiasts can now buy budget end 3D printers for the price of a regular smartphone. Some even think we’ll soon be 3D printing our own unique products on demand. How cool is that!

3D Printing in the Late 1980s

Yes you read the title right. Stereolithography (SLA), commonly known as 3D printing, has been around since the 1980s. Those early pioneers called it Rapid Prototyping (RP) technologies. That’s a bit of a mouthful for most of us—hence the term 3D printing was born. Although printing is only one part of the process, most people prefer to use the term ‘3D printing’ when talking about the technology in general. Back in the 1980s, few could have realized the full potential of this amazing technology. They first used this early process as an affordable way to create prototypes for product development within certain industries.

Not a Lot of People Know This

Not a lot of people know this, but a Japanese lawyer called Dr. Hideo Kodama, was the first person to file a patent for Rapid Prototyping (RP) technology. Unfortunately for him, the authorities denied his application. Why? Because Kodama missed the one-year deadline and so failed to file the full patent requirements on time. This was back in May, 1980. As Dr. Kodama was a patent lawyer, his blunder was both embarrassing and disastrous.

Here’s something else that’s’ not common knowledge: Four years after Dr. Kodama, a French team of engineers decided to run with the technology. Although they had a keen interest in stereolithography, they soon had to abandon their mission. Despite their best intentions, there was a sad lack of interest in 3D printing from a business perspective. This wasn’t the end though. There was someone else who had a keen interest in the technology, and he picked up where the French left off.

Fast Forward to 1986

The actual origin of 3D printing, as we know it, has a different date. Today we can trace the very first patent for SLA back to 1986. To give you an idea of how long it’s been around, if you’re under 30 that’s before you were born. The patent belonged to an American inventor name Charles (Chuck) Hull. He was the first person to invent the SLA machine (3D printer). This was the first ever device of its kind to print a real physical part from a digital (computer generated) file. Hull later went on to co-found DTM Inc., which 3D Systems Corporation later acquired.

From its humble beginnings, 3D Systems Corporation went on to become a name synonymous with 3D printing. In fact, it’s one of the biggest and most productive organizations to operate within the wider 3D printing sector today. Even Hull himself admitted he underestimated the true impact and potential his creation would have on the modern world. Even today, new research and exciting innovation is moving ahead at an unprecedented rate.

Here’s a recap of events:

  • 1980: Rapid Prototyping (RP) technology patent failed by Dr Kodama
  • 1984: Stereolithography taken up by a French team but soon abandoned
  • 1986: Stereolithography taken up by American inventor Charles (Chuck) Hull
  • 1987: Very first SLA-1 machine
  • 1988: First SLS machine by DTM Inc; later acquired by 3D Systems Corporation

There was plenty of other, lesser known activity going on in the background during this time:

  • Ballistic Particle Manufacturing (BPM) patented by William Masters
  • Laminated Object Manufacturing (LOM) patented by Michael Feygin
  • Solid Ground Curing (SGC) patented by Itzchak Pomerantz et al
  • Three-dimensional printing (3DP) patented by Emanuel Sachs et al

Only those involved in 3D printing technologies during the early 1990s would have known about the buzz going on at that time. But like all competition, it’s the best of the best that survive and go on to make their mark in the world. Today we have three originals remaining, which are:

  1. 3D Systems
  2. EOS
  3. Stratasys

The rest—as they say—is history.

When 3D Printing First Became Popular

3D printing first became popular back in the late 1980s, but not in the public sense. Its early popularity was among various industries. They liked it because it offered rapid prototyping of industrial products and designs. It proved to be quick and accurate, but it was also cost effective. For a lot of industries, rapid prototyping technology was checking a lot of boxes, and continues to do so.

Like with all great innovations, 3D printing had to go through a life cycle before it reached maturity. Most good ideas never take off, for all kinds of reasons, but a few do. The good news is that the additive manufacturing (AM) technology has made it. If we take 3D printing from its origin to the present day, it will look something like this:

  1. The Infancy Stage: 1981 to 1999
  2. The Adolescence Stage: 1999 to 2010
  3. The Adult Stage: 2011 to the present day

Some will say that 3D printers and 3D printing technology is now in its prime. Others will argue that there’s still a long and exciting road ahead of us. The latter group is most likely correct, as the future potential looks incredible. Think 3D food and human body parts—it’s all on the table.

Let’s take a look at each of these important stages one at a time:

Stage 1: The Infancy History of 3D Printing

This period is from 1981 through to 1999. It all began in Japan with Dr. Hideo Kodama of the Nagoya Municipal Industrial Research Institute (NMIRI). It was a public research institute in Nagoya city. It was here that Dr. Kodama published his findings of a fully-functional rapid prototyping (RP) system. The material used for the process was a photopolymer—a type of light-activated resin. This was a time when the first solid, 3D printed object came to be. Each print cycle added a new layer to the previous one. As it did this, each of these layers corresponded to a cross-sectional slice in the 3D model. This was the industry’s humble beginnings. And you know what happened after that to Dr. Hideo Kodama’s failed patent (see above).

Point of interest: Photopolymer is a kind of acrylic-based substance. It leaves the printer’s nozzle in liquid form from where an ultraviolet (UV) laser beam hits the exposed material. The exposed photopolymer instantly turns from a liquid to a solid plastic. After the printed layers eventually reach the model’s height, the 3D object is complete. When news of stereolithography first came out it excited inventors like nothing before it. For them, it meant they had the potential to print accurate prototypes and test new designs much faster. It also meant they’d be able to print prototypes with much less upfront investment time and costs.

Moving on three years to 1984, it was Chuck (Charles) Hull’s time. Hull went on to break new ground in 3D printing technology by inventing stereolithography (SLA or SL). SLA is special because it allows designers to create their 3D models using digital data files. They then upload these files to the printer to produce real physical, 3D objects, one layer at a time.

By the year 1992, Chuck Hall had realized his dream and created the world’s first ever SLA machine. Now anyone, who had the money, could fabricate complex 3D objects and object parts. SLA was a game changer. This new process took a fraction of the time compared to more traditional methods.

Also in 1992, DTM Inc. presented the first ever selective laser sintering (SLS) machine to the world. SLS works by shooting a laser at a powdered material rather than a liquid.

Rough Around the Edges

As exciting as these new technologies were, they still had some way to go before they made mainstream news headlines. Complex 3D models, in particular, proved hard to perfect. All too often, objects would warp as the material hardened. The machines were also expensive. They were certainly too costly for solo investors and hobbyists. It’s for these reasons that the technology was unheard of for decades after those first inventions. Even today, a time when 3D printing has become a buzz word, the real potential continues to unfold.

Stage 2: The Adolescent History of 3D Printing

The adolescent history runs from 1999 through to 2010. The general public still wasn’t familiar with 3D printing technology, but there were plenty of others who were. This was the decade where we saw the first ever 3D printed organ. In this case it was a human bladder. We have the Scientists at Wake Forest Institute for Regenerative Medicine to thank for that. First they 3D printed the synthetic scaffolds of the organ. After that, they coated it with actual cells taken from real patients. It’s what happened next that was so exciting. Surgeons were able to implant the newly formed tissue into patients. What made this so groundbreaking is that the patient’s own immune system would not reject an implant made of their own body cells. Even today it sounds farfetched, but it happened, and bigger and better things continue to happen.

As far as medicine goes, this was the decade for 3D printing technologies. As research continued, more amazing medical uses for 3D printing emerged. Here are just three others that are hard to believe:

  1. The first fabricated, functional miniature kidney
  2. The first prosthetic leg which included complex components
  3. The first bio-printed blood vessels using human cells

3D Printing’s Open Source Movement

The medical profession was not the only beneficiary of 3D printing innovation during this decade. It was also a time where the open-source movement got involved with the technology. One historical movement led by Dr. Adrian Bowyer in 2005 has to get a mention here. His open-source initiative was an ambitious project. The challenge was to create a 3D printer that had the ability to build itself, or at least print the parts needed for the new machine. He aptly named this ‘The Replication Rapid-Prototyper Project‘ or RepRap for short.

By the year 2008, the Reprap Darwin 3D printer was born. This open-source project helped to launch 3D printing into the spotlight. For the first time people began to talk seriously about the potential of 3D technology. They could see that they had the power to create all kinds of things based on ideas. A website called ‘Kickstarter‘ launched in 2009. It’s now the largest funding platform in the world for creative projects. There have been countless 3D-printing-related projects crowd-funded from this one platform alone.

3D Printing Becomes a Buzz Word

It was somewhere around the mid-2000s when ‘3D printing’ became something of a buzz word. The very first selective laser sintering (SLS) machines were to become commercially viable. In 2006, on-demand manufacturing came into being for industrial parts. Soon after this, the ability to print with various other materials got industry even more excited. From an engineering standpoint, this was a huge deal, offering all sorts of options in parts production. At the end of this adolescent period in 3D printing history we began to see various collaborative co-creation services appear. The easily accessible 3D printing marketplace had arrived. Nowadays, people can exhibit their designs, share ideas, and freely swap information.

Also at the end of this era, MakerBot made an appearance. This was the first service of its kind to provide open-source DIY 3D printer kits. It was an affordable way for people to learn all about the technology as they built their own machines. At last, 3D printers were becoming accessible to the general public.

Stage 3: The Maturing History of 3D Printing

If you thought 3D printing had reached its peak, think again. It’s as though there’re no limits going forward. The speed in which the technology has picked up in recent times is nothing short of spectacular. It’s almost as if we’re living in the future. For home users, hobbyists, and small businesses, the news gets better all the time. Aside from the impressive technology, the other reasons why 3D printing is becoming so commonplace are as follows:

  • The cost of 3D printers has plummeted
  • The accuracy of 3D printing has improved and continues to get better
  • The machines are user-friendly (anyone can use them)
  • It’s easier to design 3D models thanks to free software programs
  • Innovators continue to push the envelope, keeping things fresh and exciting

Charles Hull knew he was onto something big, but he could never have envisaged just how big it would all get. Today, anyone can print with materials other than plastics. There are options to print with metals, glass, paper and wood among others. What you can print is also keeping the industry alive and thrilling. You can print musical instruments, jewelry, household items, and clothing accessories. Future potential looks at 3D printed homes, drones, vehicles, foods, and other human body parts. There seems to be no limitations.

3D Printing in the Present Day – Where Are We Now?

Just when you thought things couldn’t get any better, things always do. At least this appears to be the case with 3D printing. The progress is so fast, and so groundbreaking, it won’t be long before the latter part of this guide is out of date. Seriously, it’s proving impossible to keep up sometimes. It’s only a matter of time when we’ll all be printing our own custom parts in 3D as and when we need them.

So what’s next? Nobody knows for sure, but what we can all agree on is that there will be more to write on 3D printing history in the future. At the time of writing this guide, the only limitations to date are human imagination, or so it seems. If we keep going like this, there will no longer be any ‘WOW’ factor. Perhaps that’s the only downside for those of us who love a great surprised.

The Road Ahead

Today, 3D printing is becoming more popular among the general public. Most people at least know what it is now, and some of the things it’s capable of. But unlike inkjet printing, few of us create 3D models and print them out on these amazing machines at home. At least not yet! The cost has come down by the thousands of dollars in recent years, and the technology has gotten better and continues to improve. But right now, the average person can’t justify owning their own machines, but this is set to change in the years ahead. It’s going to change because of the types of things we will be able to print in 3D in all kinds of different materials.

Anyone who wants to explore 3D printing and experience the technology can do. You don’t need to own a 3D printer to be able to print in 3D. It’s now possible to design your own 3D models using one of the free online 3D design programs like Tinkercad. Once you model is ready, you can find a local or online service to print your 3D model for you. It’s that easy.

There’s still plenty of future history around 3D printing so watch this space.

Written by Joseph Flynt.

Photo credit Adrian Bowyer

Warning; 3D printers should never be left unattended. They can pose a firesafety hazard.

History of 3D printing

In this section, we wanted to trace the history of 3D printing from its inception to the present day, as well as give a forecast regarding the future development of technology.


The first 3d printer was invented by the American Charles Hull, he worked on the technology of stereolithography (SLA), a patent for the technology was issued in 1986. The printer was a fairly large industrial installation. The installation "grew" a three-dimensional model by applying a photopolymerizable material to a moving platform. The basis was a digital model pre-modeled on a computer (3D model). This 3d printer created three-dimensional objects, rising by 0.1-0.2 mm - the height of the layer. Despite the fact that the first device had many disadvantages, the technology has received its application. Charles Hull is also the co-founder of 3dsystems, one of the world's leading manufacturers of industrial 3D printers.

Charles Hull was not the only one to experiment with 3D printing technology, as in 1986 Carl Deckard invented Selective Laser Sintering (SLS). You can learn more about the method in another article, briefly: a laser beam sinters a powder (plastic, metal, etc.), while the mass of the powder is heated in the working chamber to a temperature close to the melting point. The basis is also a digital model pre-modeled on a computer (3D model). After the laser passes through the horizontal layer, the chamber is lowered to the layer height (usually 0. 1-0.2 mm), the powder mass is leveled with a special device and a new layer is applied.

However, the most famous and widespread 3D printing method today is layer-by-layer direction (FDM). The idea of ​​technology belongs to Scott Crump (Scott Crump), the patent dates back to 1988. You can learn more about the method in another article, in short: material (usually plastic) is fed from the heated nozzle of the print head using a stepper motor, the print head moves on linear guides along 1 or two axes, and the platform moves along 1 or 2 axes . The basis of the movement is also a 3D model. The molten plastic is laid on the platform along the established contour, after which the head or platform is moved and a new layer is applied on top of the old one. Scott Crump is one of the founders of Stratasys, which is also one of the leaders in the production of industrial 3D printers.

All the devices described above belonged to the class of industrial devices and were quite expensive, so one of the first 3d Dimension printers from Stratasys in 1991 cost from 50 to 220 thousand US dollars (depending on the model and configuration). Printers based on the technologies described above cost even more and until very recently, only a narrow circle of interested specialists knew about these devices.

Everything began to change since 2006, when the RepRap project (from the English Replicating Rapid Prototyper - a self-replicating mechanism for rapid prototyping) was founded, with the goal of creating a self-copying device, which was a 3D printer working on technology FDM (layer by layer deposition). Only, unlike expensive industrial devices, it looked like a clumsy invention made from improvised means. Metal shafts serve as a frame, they also serve as guides for the print head. driven by simple stepper motors. The software is open source. Almost all connecting parts are printed from plastic on the 3D printer itself. This idea originated among English scientists and aimed at spreading available additive technologies so that users can download 3D models on the Internet and create the necessary products, thus minimizing the production chain.

Leaving aside the ideological component, the community (which exists and develops to this day) managed to create a 3d printer accessible to the "ordinary person". So a set of unprinted parts can cost around a couple of hundred US dollars and a finished device from $500. And even though these devices looked unsightly and were significantly inferior in quality to their industrial counterparts, all this was an incredible impetus for the development of 3D printing technology.
As the RepRap project developed, 3D printers began to appear, taking as a basis the base laid down by the movement in technical and, sometimes, ideological terms (for example, commitment to the concept of open source - OpenSource). The companies that made printers tried to make them better both in terms of performance, design and user experience. The first RepRap printers cannot be called a commercial product, since it is not so easy to manage (and even more so to assemble) and it is not always possible to achieve stable work results. Nevertheless, companies tried to close the more than significant gap in quality, leaving a significant gap in cost whenever possible.

First of all, it is worth mentioning the MakerBot company, which started as a startup, took RepRap ideas as a basis and gradually turned them into a product of a new quality.

Their flagship product (and in our opinion the best to this day) remains the MakerBot Replicator 2 3D printer. The model was released in 2012 and later discontinued, but remains one of the most popular 3D printer models to this day " personal" segment (according to 3dhubs). The word "personal" is in brackets because this printer, which cost $2,200 at the time of release, was (and is) primarily used for business purposes, but falls into the personal segment due to its cost. This model differs from its progenitors (RepRap), being, in fact, a finished commercial product. Manufacturers abandoned the concept of OpenSource, closing all sources and software codes.

In parallel with the release of equipment, the company actively developed the Thingiverse resource, which contains many models for 3d printing, available for download for free. During the development of the first printer and beyond, the community has helped the company a lot, testing the product and offering various upgrades. After the release of the Replicator 2 (and the closure of development), the situation has changed. You can learn more about the history of MakerBot and other companies and people associated with 3d printing by watching the film Print the legend.

This film also highlights the history of Formlabs, one of the first companies to launch an affordable 3D printer based on SLA (Strereolithography) technology. The company raised funds for the first FORM 1 model through crowdfunding, encountered production difficulties, but eventually released an affordable and productive 3D printer, closing the quality gap described above.

And although the 3D printers described above were far from perfect, they laid the foundation for the development of affordable 3D printing technology, which continues to this day. At the moment, the quality of FDM and SLA printers is increasing, but there is no significant price reduction, rather, on the contrary, it is growing slightly. Along with FDM and SLA, many companies are developing in the field of powder sintering (SLS), as well as metal printing. Despite the fact that such printers cannot be called affordable, their price is much lower in comparison with analogues from the professional segment. It is also worth noting the development of the line of materials, in addition to the standard ABS and PLA plastics, today many different materials are used, including nylon, carbon fiber and other durable and refractory materials.

Personal 3d printers of today are very close to professional devices, the development of which also does not stop. In addition to the "founders" of the technology (Stratasys, 3dsystems), many small companies specializing in industrial 3D printing technologies (metal in particular) have emerged. 3D printing is also attracting the attention of large corporations, which, with varying degrees of success, are striving to take their place in a growing market. Here it is worth highlighting HP, which recently released the HP Jet Fusion 3D 4200 model, which has gained popularity among 3d printing professionals (as of 2018, it is at the top of the ranking of professional 3D printers in the quarterly reports of the 3dhubs portal).

However, 3D printing technologies are developing not only in breadth, but also in depth. One of the main disadvantages of 3D printing, compared to other production methods, is the low speed of creating models. A significant advance in terms of accelerating 3D printing was the invention of CLIP technology by CARBON, printers operating on this technology can produce models 100 times faster than classic SLA technology.

There is also a constant expansion of the range, properties and quality of materials and post-processing of products. All this accelerates the transition to the use of 3d printers in production, and not just as prototyping devices. Today, many large and not only companies and organizations are closely using a 3D printer in their production chain: from consumer goods manufacturers NIKE and PUMA to BOEING and SPACE X (the latter prints engine parts for its rockets that could not be made in any other way) .

In addition to the "classic" scope of 3D printing, today more and more often you can see news about how a house or some organ (or rather, a small part of it) was printed on a 3D printer from bio-material. And this is true, several companies around the world are testing or already partially using 3D printing in the construction of buildings and structures. This mainly concerns the contour pouring of walls (similar to the FDM method) with a special composite concrete mixture. And in Amsterdam there is a 3D printed bridge project and this list will only expand over time, since the use of 3D printing in construction can significantly reduce costs and increase the speed of work at certain stages.
With regards to medicine, here 3D printing also finds application, but at the moment it is not printing organs, but rather the use of technology in prosthetics (of various kinds) and bone replacement. Also, 3D printing technology is widely used in dentistry (SLA technology). Regarding the printing of organs, this is still far in the future, at the moment bio-3D printers are experimental facilities in the early stages, the success of which is limited to printing a few limited-viable cells.

Looking to the future, it is safe to say that 3D printing technology will expand both in breadth and depth, improving technology, speeding up processes, improving quality and improving material properties. 3D printers will increasingly replace old methods in production chains of various scales, and world production, due to this, will move towards the “on demand” scheme of work, increasing the degree of product customization. Perhaps someday, 3D printers will be widely used at the household level for the production of necessary things (the dream and goal of the RepRap movement), but this requires not only the development of technology, but also a paradigm shift in social thinking, as well as the development of a powerful design ecosystem ( 3d modeling) products (which is often forgotten).

3d printing of houses (and other structures) will no doubt also develop, reducing costs and production time, which, together with the development of new approaches in architecture and urban planning (such as modular construction and the prefabricated method), will give a tangible impetus to development the industry as a whole.

Biological 3D printers will be an important tool in scientific research. However, before they appear in hospitals and clinics, where they will print new organs, it is still very, very far away (in fact, this is science fiction).

A Brief History of 3D Printing / Sudo Null IT News

3D printing was born 40 years ago and opened up amazing possibilities for creating various models in prototyping, dentistry, small-scale production, customized products, miniatures, sculptures, mock-ups and much more.

Who invented the 3D printer? What was the first 3D printing technology? And what was the first thing they printed on a 3D printer? Let's open the veil of secrecy over a huge number of interesting facts and stories about the emergence of technology. 9. , which layer-by-layer formed a rigid object from a photopolymer resin with the help of UV illumination.

In fact, he described a modern photopolymer printer, but failed to provide the necessary data for patent registration within a year, as required by patent law, and abandoned the idea. However, in many sources it is he who is called the inventor of 3D printing technology.

In 1983, three engineers - Alain Le Meho, Olivier de Witt and Jean-Claude André from the French National Center for Scientific Research, in an attempt to create what they called a "fractal object", came up with the idea of ​​using a laser and a monomer, which, under the influence of a laser, turned into a polymer. They applied for a patent 3 weeks before the American Chuck Hal. The first object created on the apparatus was a spiral staircase. Engineers called the technology stereolithography, and the patent was approved only in 1986 year. Thanks to them, the most famous file format for 3D printing is called STL (from the English stereolithography). Unfortunately, the institute did not see any prospects in the invention and its commercialization, and the patent was not used to create the final product.

Chuck Hull, Inventor of SLA

Laser Stereolithography At the same time, Chuck Hull was working for a company that made countertop and furniture coatings using UV lamps. The production of small plastic parts for prototyping new product designs took up to two months. Chuck came up with the idea to speed up this process by combining UV technology and layering thin plastic. The company gave him a small laboratory for experiments, where he worked in the evenings and weekends. As a material, Chuck used acrylic-based photopolymers that harden under the influence of ultraviolet radiation. One night, after months of experimentation, he was finally able to print a sample and was so elated by luck that he walked home. Chuck showed his invention to his wife. It was an eyewash cup, more like a communion cup, according to the wife. It is considered officially the first 3D printed model in the world and is still kept by the Hull family, and after their death will be transferred to the Smithsonian Research Institute in Washington.

Hull's Cup

Chuck Hull filed a patent on August 8, 1984 and was approved on March 11, 1986. The invention was called "Apparatus for creating three-dimensional objects using stereolithography. " Chuck founded his own company - 3D Systems, and in 1988 launched the first commercial 3D printer - the SL1 model.

Carl Deckard and Joe Beeman (right), inventors of SLS 3D printing (1987)

Another new 3D printing method appeared around the same time as SLA printing. This is selective laser sintering SLS , which uses a laser to turn loose powder (instead of resin) into a solid material. Carl Deckard , a young undergraduate student at the University of Texas at Austin, and his teacher Prof. Dr. Joe Beeman were involved in the development. And the idea belonged to Karl. In 1987, they co-founded Desk Top Manufacturing (DTM) Corp. However, it will take at least another 20 years for SLS 3D printing to become commercially available to the consumer. In 2001, the company was bought out by Chaka Hull, 3D Systems.

Scott Crump, developer of FDM 3D printing (1988)

Surprisingly simpler and cheaper 3D printing is FDM (Fused Deposition Modeling) was created after SLA and SLS, in 1988. Its author was aeronautical engineer Scott Crump . Crump was looking for an easy way to make a toy frog for his daughter and used a hot glue gun to melt the plastic and pour it into layers. Thus, the idea of ​​FDM 3D printing was born, a technology for layer-by-layer deposition of a plastic thread. Crump patented a new idea and co-founded Stratasys with his wife Lisa Crump at 1989 year. In 1992, they launched their first production product, the Stratasys 3D Modeler, on the market.

Milestone 2: 3D printing becomes available

The first machines built by 3D Systems and Stratasys were bulky and expensive. The cost of one was hundreds of thousands of dollars, and only the largest companies in the automotive and aerospace industries could use them. Printers had a lot of limitations and could not be widely used. The development of technology has been very slow. 20 years later, in 2005, the RepRap (Replicating Rapid Prototyper) project appeared - a self-replicating mechanism for rapid prototyping.

It was inspired by Dr. Adrian Bauer from the University of Bath in the UK. The goal of the project was to "self-copy", replicate the components of the 3D printers themselves. In the photo, all the plastic parts of the "child" are printed on the "parent". But in fact, a group of enthusiasts led by Adrian were finally able to create the budget 3D printer for home or office use .

The idea was quickly taken up by three New York technologists and started a desktop FDM printer company, MakerBot. This was the second turning point in the modern history of 3D printing.

Other technologies were being developed in parallel. One of them is bioprinting. Thomas Boland of Clemson University has patented the use of inkjet printing to 3D print living cells, making it possible to print human organs in the future. Dozens of companies around the world conduct research in this area.

Another important use of the new technology was the creation of prostheses, first conventional, and then bionic.


Learn more