Top metal 3d printers


Best metal 3D printers in 2022: comprehensive overview

What is the best metal 3D printer in 2022?

Over the past few years, there has been a surge in both supply and demand for metal 3D printers.

Manufacturers are launching metal additive manufacturing machines that are faster, easier to use, and more powerful with an increasing number of compatible metals.

Many businesses are adopting these 3D metal printing technologies to produce cost-effective metal parts and prototypes, benefiting as well from increased freedom of design linked to additive manufacturing. They are suitable for a variety of industries such as aerospace, automotive, health, engineering, and more.

Although metal 3D printer prices have been slowly and slightly decreasing, these machines are still relatively expensive acquisitions, mostly ranging from $80K to almost $1M.

With our metal 3D printer selection, we aim to provide a comprehensive overview of what’s available from well-established and distributed brands, at various price points, and with different metal 3D printing technologies.

The best metal 3D printers in 2022

BrandProductBuild sizeCountryPrice

Approximate starting prices based on supplier-provided information and public data. Prices may vary by region, over time and do not include additional products or services (taxes, shipping, accessories, training, installation, …).

MarkforgedMetal X (Gen 2) 300 × 220 × 180 mm11.81 × 8.66 × 7.09 inUnited States$ 99,500125 000 €88,260 £14,831,072 ¥Quote
Xact MetalXM200C 127 × 127 × 127 mm5 × 5 × 5 inUnited States$ 110,000100 000 €97,574 £16,396,160 ¥Quote
Pollen AMPam Series MC ⌀ 300 x 300 mm$ 140,000135 000 €124,186 £20,867,840 ¥Quote
TRUMPFTruPrint 1000 100 × 100 × 100 mm3.94 × 3.94 × 3.94 in$ 170,000170 000 €150,797 £25,339,520 ¥Quote
3D Systems

This brand is a certified partner from our network.

DMP Flex 100 100 × 100 × 80 mm3.94 × 3.94 × 3.15 in$ 245,000245 000 €217,325 £36,518,720 ¥Quote
EOS EOS M 100 100 × 100 × 95 mm3.94 × 3.94 × 3.74 inGermany$ 350,000350 000 €310,464 £52,169,600 ¥Quote
XJetCarmel 700M 501 × 140 × 200 mm19.72 × 5.51 × 7.87 in$ 599,000599 000 €531,337 £89,284,544 ¥Quote
Desktop MetalProduction System P-1 200 × 100 × 40 mm7.87 × 3.94 × 1.57 inUnited States upon requestQuote
Desktop MetalStudio 2 300 × 200 × 200 mm11.81 × 7.87 × 7.87 inUnited States upon requestQuote
Digital MetalDM P2500 203 × 180 × 69 mm7.99 × 7.09 × 2.72 in upon requestQuote
FormalloyL-Series 1000 × 1000 × 1000 mm39. 37 × 39.37 × 39.37 inUnited States upon requestQuote
GE AdditiveArcam EBM Spectra L ⌀ 350 x 430 mmUnited States upon requestQuote
GE AdditiveM2 Series 5 250 × 250 × 350 mm9.84 × 9.84 × 13.78 in upon requestQuote
RenishawRenAM 500E 245 × 245 × 335 mm9.65 × 9.65 × 13.19 in upon requestQuote
SLM Solutions SLM 125 125 × 125 × 75 mm4.92 × 4.92 × 2.95 inGermany upon requestQuote
SPEE3DLIGHTSPEE3D 300 × 300 × 300 mm11.81 × 11.81 × 11.81 in upon requestQuote
TRIDITIVEAMCELL ⌀ 300 x 350 mmSpain upon requestQuote
Velo3DSapphire ⌀ 315 x 1000 mm upon requestQuote

Expand to see more specs

Technology: The technologies listed above are main categories of metal 3D printing technologies. Most manufacturers have their own branded technologies, which fall into the main categories that are listed in the table.

The products in the table are ranked by price (low to high).

BrandProductTechnologyBuild sizeCountryPrice

Approximate starting prices based on supplier-provided information and public data. Prices may vary by region, over time and do not include additional products or services (taxes, shipping, accessories, training, installation, …).

MarkforgedMetal X (Gen 2)Extrusion300 × 220 × 180 mm11.81 × 8.66 × 7.09 inUnited States$ 99,500125 000 €88,260 £14,831,072 ¥Get a quote
Xact MetalXM200CSLM/DMLS127 × 127 × 127 mm5 × 5 × 5 inUnited States$ 110,000100 000 €97,574 £16,396,160 ¥Get a quote
Pollen AMPam Series MCExtrusion⌀ 300 x 300 mm$ 140,000135 000 €124,186 £20,867,840 ¥Get a quote
TRUMPFTruPrint 1000SLM/DMLS100 × 100 × 100 mm3. 94 × 3.94 × 3.94 in$ 170,000170 000 €150,797 £25,339,520 ¥Get a quote
3D Systems

This brand is a certified partner from our network.

DMP Flex 100SLM/DMLS100 × 100 × 80 mm3.94 × 3.94 × 3.15 in$ 245,000245 000 €217,325 £36,518,720 ¥Get a quote
EOS EOS M 100SLM/DMLS100 × 100 × 95 mm3.94 × 3.94 × 3.74 inGermany$ 350,000350 000 €310,464 £52,169,600 ¥Get a quote
XJetCarmel 700MMaterial Jetting501 × 140 × 200 mm19.72 × 5.51 × 7.87 in$ 599,000599 000 €531,337 £89,284,544 ¥Get a quote
Desktop MetalProduction System P-1Binder Jetting200 × 100 × 40 mm7.87 × 3.94 × 1.57 inUnited States upon requestGet a quote
Desktop MetalStudio 2Extrusion300 × 200 × 200 mm11. 81 × 7.87 × 7.87 inUnited States upon requestGet a quote
Digital MetalDM P2500Material Jetting203 × 180 × 69 mm7.99 × 7.09 × 2.72 in upon requestGet a quote
FormalloyL-SeriesDirected Energy Deposition1000 × 1000 × 1000 mm39.37 × 39.37 × 39.37 inUnited States upon requestGet a quote
GE AdditiveArcam EBM Spectra LEBM⌀ 350 x 430 mmUnited States upon requestGet a quote
GE AdditiveM2 Series 5SLM/DMLS250 × 250 × 350 mm9.84 × 9.84 × 13.78 in upon requestGet a quote
RenishawRenAM 500ESLM/DMLS245 × 245 × 335 mm9.65 × 9.65 × 13.19 in upon requestGet a quote
SLM Solutions SLM 125SLM/DMLS125 × 125 × 75 mm4. 92 × 4.92 × 2.95 inGermany upon requestGet a quote
SPEE3DLIGHTSPEE3DMaterial Jetting300 × 300 × 300 mm11.81 × 11.81 × 11.81 in upon requestGet a quote
TRIDITIVEAMCELLExtrusion⌀ 300 x 350 mmSpain upon requestGet a quote
Velo3DSapphireSLM/DMLS⌀ 315 x 1000 mm upon requestGet a quote

Main types of metal 3D printing technologies

The four main types of 3D metal printing technologies are:

  • Metal Powder Bed Fusion 3D printing (SLS, SLM, DMP)
  • Directed Energy Deposition (DED)
  • Metal filament extrusion (FFF, FDM)
  • Material Jetting and Binder Jetting

There are also some resin-based metal 3D printers, and metal sheet lamination 3D printers, but they are harder to come by.

It is not uncommon to see different acronyms and names for similar technologies. Each brand markets their own, proprietary methods. Some metal 3D printer companies even use a mix of different technologies.

A breakdown of the metal 3D printer market by technology types. Source: Aniwaa database (2019)

Here we provide a deeper look into each 3D metal printer from our list. They are grouped together according to their main 3D printing technology type (powder bed fusion, material/binder jetting, extrusion, and DED).

Extrusion-based metal 3D printer selection (FFF, FDM)

Extrusion consists of heating the material (filament) and pushing it through a nozzle. In the metal 3D printing case, the filament is generally made up of metal particles mixed into a binding agent.

After the part is 3D printed, the result is a raw object or part; it must go through several post-processing steps– such as debinding and sintering– to attain its final form.

Most extrusion-based metal 3D printing processes include these steps. The above illustration is sourced from Desktop Metal (Bound Metal Deposition™ process).

Desktop Metal’s Studio is an office-friendly, end-to-end metal 3D printing system. Aside from the printer, the Studio line also includes a debinding machine and a furnace for sintering. Indeed, parts 3D printed with this Desktop Metal 3D printer are “green”.

The Studio printer, with its proprietary Bound Metal Deposition technology, uses filament that is filled with small, metal rods. During debinding, the binding material (wax and polymer binders) is dissolved thanks to a proprietary liquid substance. The part is left porous, and must go in the furnace for its particles to fuse and densify the part.

Contact manufacturer Get a quote Add to comparison

MarkForged is specialized in continuous fiber 3D printing, but also offers metal 3D printing with their Metal X system, featuring Atomic Diffusion Additive Manufacturing (ADAM) technology.

This MarkForged 3D printer extrudes metal-filled plastic filament to form the part, which must then be washed with a special debinding fluid (Wash-1 Station) and then sintered in a furnace (Sinter-1 or Sinter-2 MarkForged machines).

Available metal 3D printer filament includes various Steels (h23, A2, D2 tool steels, 316L stainless steel) as well as Inconel, Copper, and Titanium.

Contact manufacturer Get a quote Add to comparison

Canada-based Rapidia offers an interesting and unique way to 3D print metal. They use a water-based metal paste, which eliminates the need for chemical debinding. The water evaporates during the 3D printing process, so the part only needs to go through the furnace in order to completely solidify and attain its final form.

Confirmed, available paste types include several Stainless Steels, Inconel, and a few ceramics. Copper, Tungsten Chrome Carbide, Titanium, and various other metals are in development.

The ExOne Metal Designlab, designed in collaboration with Rapidia, works on the same basis.

Contact manufacturer Get a quote Add to comparison

Pollen AM is a French manufacturer that has been producing pellet 3D printers since 2013. Their Pam Series MC is a delta-style 3D printer (cylindrical build volume) that can print metals, ceramics, and thermoplastics.

It extrudes injection-molding-grade pellets instead of metal 3D printer filament, driving material costs down significantly. Pollen AM names their technology “Pellet Additive Manufacturing”.

Contact manufacturer Get a quote Add to comparison

This machine was built with one goal: enable mass production 3D printing of metal parts 24/7. The AMCELL is fully automated, with auto feedstock control, environment control (temperatures, humidity, air filtering), and an ejection system fitted with a conveyor belt.

Rather than providing one, big build volume, the TRIDITIVE AMCELL boasts eight delta-style ø 220 x 330 mm build areas. Its eight “robots” deposit metal-infused filament to create 3D metal parts. TRIDITIVE states that resulting parts are similar to ones produced with traditional MIM (Metal Injection Molding) methods.

TRIDITIVE’s technology is called Automated Multimaterial Deposition®.

Contact manufacturer Get a quote Add to comparison

Metal powder bed fusion 3D printer selection (SLS, SLM, DMP, and more)

At the moment, the most commonly used metal additive manufacturing technology is powder bed fusion 3D printing. Simply put, the 3D printer creates objects out of a bed of powdered metal by using a powerful laser.

3D Systems, a historical actor on many 3D printing fronts, presents the DMP FLEX 100 as a fast, precise, and affordable metal 3D printer. It offers impressive part repeatability and surface finishes, of around 20 μm and 5 Ra μm respectively. DMP stands for Direct Metal Printing.

The printer comes with 3D Systems’ software 3DXpert All-in-One Software Solution for Metal Additive manufacturing. Their LaserForm metal 3D powders are certified.

Contact manufacturer Get a quote Add to comparison

This compact metal 3D printer is destined for the production of small parts in small quantities. Its material portfolio is especially interesting for medical use cases, namely dental crowns and bridges. EOS certified metal powders include Cobalt-Chrome, Stainless Steel, and Titanium.

The EOS M100’s laser spot is precise enough to provide a great level of detail, backed by 200 W of powder.

Contact manufacturer Get a quote Add to comparison

Originally a Swedish company, Arcam was acquired by GE Additive a few years ago. The Arcam EBM Spectra L is up to 20% faster than its predecessors and is able to reduce part costs by around 10%.

This metal 3D printer is dedicated to Titanium 3D printing, but Copper is in the pipeline as well. Its laser beam power is equal to 4.5 kW, partly explaining the printer’s high melting capacity and productivity. Common applications for this printer include orthopedic implants and parts for the aerospace industry.

Contact manufacturer Get a quote Add to comparison

Concept Laser is the company behind GE Additive’s M2 Series 5. It offers an easy, optimized workflow, with a separate processing chamber and handling area that is integrated into the system. This closed-loop material system ensures a safe environment that is free of powder for the operator.

The M2 metal additive manufacturing solution is compatible with a range of metals, from Stainless Steels to Aluminum, Nickel, Titanium, and Cobalt-Chrome.

Contact manufacturer Get a quote Add to comparison

The RenAM 500E is Renishaw’s entry-level metal additive manufacturing solution. It offers a relatively large build volume and powder can be handled via a dedicated glove box to avoid powder from getting free.

This system is also equipped with an oxygen sensor and a proprietary emission-filtering system branded SafeChange™.

Contact manufacturer Get a quote Add to comparison

Officially established in 2006, SLM Solutions has been a historical player in the powder bed fusion industry for many years. The SLM 125 boasts an open software architecture that allows users to tweak the system’s parameters according to specific use cases, materials, and general needs.

Options such as laser monitoring and melt pool monitoring are available for businesses that require full transparency and control over their production series.

Contact manufacturer Get a quote Add to comparison

The TruPrint 1000 is TRUMPF’s most compact metal 3D printing system, with a 100mm-tall cylindrical build volume. It is suitable for the production of small parts and prototypes, and even small production series when equipped with the multilaser option that increases the printer’s speed.

This metal 3D printer can be operated remotely via a tablet application, which also gives access to its onboard camera stream.

Contact manufacturer Get a quote Add to comparison

The Velo3D Sapphire is a high-volume metal 3D printer from the US designed for production series. This metal 3D printer features Velo3D’s Intelligent Fusion technology to allow for complex geometries and 0° overhangs.

The system is also equipped with a range of metrology sensors that measure each and every layer that is 3D printed.

Contact manufacturer Get a quote Add to comparison

The XM200C is Xact Metal’s entry-level metal 3D printing solution. It is suitable for both research purposes and small production series. The XM200C benefits from a proprietary Xact Core gantry system for precise movements with a fusing speed of up to 500 mm/s.

Xact Metal offers their own materials, branded Xact Powder, including various Stainless Steels, Super Alloys, Tooling Steels, Aluminum, Titanium, Bronze, and Copper. Advanced users are able to use their own metal powders if needed.

Contact manufacturer Get a quote Add to comparison

Metal material jetting and binder jetting 3D printers

Material jetting 3D printers are equipped with various inkjet printheads (somewhat similar to 2D printing) that jet material onto a surface. The material then hardens, and another layer of “metal ink” is jetted on top.

Binder jetting is a similar process, but it is a binding agent that is jetted atop a layer of powder.

The Production System by Desktop Metal was designed for mass production. It is advertised by Desktop Metal as being a fast, cost-effective metal additive manufacturing solution, with a cost per part up to 20 times lower than with other metal 3D printing systems.

This Desktop Metal 3D printer is equipped with over 16,000 nozzles that are mounted onto a “print bar” that recoats the build plate with powder at the same time, hence explaining the technology’s name: Single Pass Jetting™.

Contact manufacturer Get a quote Add to comparison

Digital Metal, a Höganäs Group company, creates incredibly detailed metal parts with their DM P2500 system. It is able to print 3D metal parts with an accuracy as high as 0.001mm (1µ), and with a medical-grade surface quality of around 0.006mm (6µ).

Another interesting feat to point out is that almost 100% of leftover powder can be recycled for future prints. This metal AM machine is able to churn out serial production series efficiently and reliably; one of the company’s first DM P2500 printers has been running 24/7 since 2013, according to Digital Metal.

The Digital Metal DM P2500 is a certified metal 3D printer (CE and UL) that is compatible with certified metal materials (ISO 22068).

Contact manufacturer Get a quote Add to comparison

Australian manufacturer SPEE3D has developed an impressively fast metal 3D printing technology called Supersonic Deposition. The technology is based on metal cold spray, using compressed air to “jet” metal powder through a nozzle at high speeds.

This enables the LightSPEE3D to 3D print at up to 100 grams per minute and with a range of metals including copper.

Contact manufacturer Get a quote Add to comparison

XJet developed an impressive, proprietary jetting technology they call NanoParticle Jetting™. This inkjet method disperses millions of tiny droplets that contain nanoparticles of solid metal. The liquid material comes in cartridges that are easy to insert into the printer.

After being printed, the metal parts must go through support removal and sintering processes to attain their final form.

Contact manufacturer Get a quote Add to comparison

DED: Directed Energy Deposition metal additive manufacturing systems

Directed Energy Deposition (DED) is comparable to filament extrusion. The metal material is pushed through a special nozzle, like with FFF/FDM, but a powerful laser beam solidifies the material at its deposition point.

Formalloy produces a range of metal DED 3D printers with up to 5 axes of motion. They can be used to produce metal parts but also to repair or clad existing parts.

Different laser wavelengths are available, as well as different build volumes: 200 x 200 x 200 mm, 500 x 500 x 500 mm, and 1000 x 1000 x 1000 mm. Metal 3D printers from Formalloy can be customized depending on company requirements.

Contact manufacturer Get a quote Add to comparison

Alternative metal 3D printers and special mentions

Hybrid metal manufacturing systems

Some manufacturers are specialized in hybrid metal manufacturing systems. They combine both subtractive and additive manufacturing methods, often with robotic arms that are able to move on more than three axes.

Some of the biggest actors on the hybrid metal AM system market are:

  • Gefertec (Germany)
  • DMG Mori (Germany)
  • Matsuura (Japan)
  • Sodick (United States)

XXL-sized metal 3D printers for industrial production

For those that require very large metal parts, there are several huge, industrial machines that offer gigantic build volumes for industrial production. To name a few:

  • Sciaky EBAM 300
  • Titomic TKF1000
  • ADC Aeroswift
  • ADIRA AddCreator
  • Fabrisonic SonicLayer 4000
  • ExOne X1 160PRO
  • InssTek MX-600
  • BeAM Modulo 400
  • Optomec Lens CS 600
  • Additive Industries MetalFAB1

Metal 3D printers from China

There has recently been a lot of growth in the metal 3D printer market in Asia, and more specifically in China. Some Chinese brands have been upping their game in that respect, providing industrial-grade metal 3D printing options:

  • Farsoon
  • ZRapid Tech
  • Shining 3D
  • Wiiboox

However, we feel that they are not yet playing in the same league as the 3D printers from our main selection, mostly due to a lack of distribution networks, after-sales service and training, and other factors which tend to matter when considering them together as a whole.

R&D metal 3D printers for labs

In certain cases, metal 3D printers are used for research purposes to develop and test new materials. There are a few machines that are specifically designed for this:

  • Open Additive PANDA-6”
  • Freemelt ONE
  • Sharebot metalONE

Pros and cons of metal 3D additive manufacturing

Benefits of 3D printing metal parts

  • On-demand production: Metal additive manufacturing offers more flexibility and control over the production line.
  • Complex designs made possible: With 3D printing technology, it is possible to create highly detailed and intricate parts that would have to be broken down into several pieces with traditional methods.
  • Waste reduction: Compared to CNC milling, for example, metal AM produces much less waste as it only consumes the material needed for a certain part. This is more true for extrusion-based methods than it is for powder-based methods, where it isn’t always possible to re-use 100% of unsintered or unbinded material.
  • Lighter parts: Whereas metal parts are usually completely solid infill-wise with other methods, 3D printing allows parts to be more or less hollow without undermining their strength and resistance.
  • Cost-effectiveness: All the above benefits of metal 3D printing can inherently reduce costs per part, although high metal 3D printer prices do represent a significant entry barrier. Reaching a positive return on investment can take a while depending on your throughput.

Limits of metal 3D printing

  • Metal 3D printing prices: Metal AM systems are still quite expensive, as are metal powders and metal filaments. There are hidden costs, too (e.g. energy consumption, learning curve, etc.).
  • Environmental constraints and safety precautions: Most metal 3D printers have a large footprint and require specific operating environments with controlled temperatures, hygrometry, and more.
  • Post-processing: In many cases it is necessary for parts to be post-processed, whether it’s debinding and sintering or finishing touches for surface quality.
  • Physical properties: It can be difficult to achieve the same physical properties that traditionally manufactured metal parts have. There are a number of factors (e.g. anisotropy) to take into account during the design process and file preparation before even trying to 3D print a certain part.

Metal 3D printing materials

Which metals can you 3D print?

A growing number of metals and metal alloys can be 3D printed. These are the main ones:

  • Aluminum
  • Titanium
  • Nickel, Inconel
  • Copper
  • Bronze
  • Cobalt, Cobalt-Chrome
  • Steels (tooling, maraging, stainless)
  • Precious metals (gold, silver, platinum)

Which metal 3D printing material formats are available?

Metal 3D printing material can be found in various formats, catering to different metal 3D printing methods. The most common are:

  • Powder
  • Wire
  • Filament

It is also possible to find metal 3D printing resin as well as metal sheets for lamination-based 3D printers.

Metal 3D printer price: how much does a metal 3D printer cost?

Industrial metal 3D printer prices generally range from about $30,000 to over one million dollars for the most premium, industrial-grade metal additive manufacturing systems.

Additional costs to consider are the materials for metal 3D printing, which can cost a few hundred USD/kg, as well as costs linked to post-processing (tools, time, etc.).

Applications for metal AM systems

There are thousands of possibilities and use cases for metal 3D printing in a wide range of industries. A few industries have been incrementally using metal AM:

  • Aerospace
  • Automotive
  • Medical

Whether it’s for tooling, replacement parts, or final products, many businesses can benefit from metal 3D printing.

However, metal additive manufacturing isn’t necessarily beneficial for every single metal part. Although some metal 3D printing systems have a relative capacity for serial production, it is generally cheaper to keep using traditional methods for simple parts.

For cases where complex geometries, rapid prototyping, and mass customization are required, metal AM is convenient and efficient.

Metal 3D printing services: order 3D metal parts online

For professionals with limited office space and human resources, low budgets, and/or few needs of custom parts and prototypes, metal 3D printing services can be an ideal solution.

These additive manufacturing service companies own a variety of high-quality 3D printers with different technologies, and their professionals are experts in 3D printing. It is possible to order metal 3D parts on-demand, without acquiring a 3D printer or having to buy a certain material for one-time use.

Here are some of the most trusted 3D printing service providers that offer metal printing services:

  • Sculpteo
  • Shapeways
  • Hubs (ex 3D Hubs)
  • Stratasys
  • i.materialise
  • Protolabs

Metal 3D printing technologies and acronyms

Many manufacturers develop proprietary variations of existing technologies and label them their own registered names:

  • Powder Bed Fusion (PBF): DMLS (Direct Metal Laser Sintering), DMP (Direct Metal Printing), LaserCUSING, LBM (Laser Beam Melting), LMF (Laser Metal Fusion), SLS (Selective Laser Sintering), SLM (Selective Laser Melting)
  • Directed Energy Deposition (DED): DMT (Direct Metal Tooling), EBAM (Electron Beam Additive Manufacturing), EBM (Electron Beam Melting), LENS (Laser Engineered Net Shaping), LMD (Laser Metal Deposition)
  • Metal Material Jetting (MJ) or Binder Jetting (BJ): Magnet-o-Jet, Nanoparticle Jetting, SPJ (Single Pass Jetting), Metal Jet
  • Metal filament extrusion/Fused Filament Fabrication (FFF): ADAM (Atomic Diffusion Additive Manufacturing), CEM (Composite Extrusion Modeling), FDM (Fused Deposition Modeling), FFD (Fused Feedstock Deposition), FMP (Filament Metal Printing), BMD (Bound Metal Deposition), MIM (Metal Injection Molding)
  • Lamination: SL (Sheet Lamination), UAM (Ultrasonic Additive Manufacturing)
  • Metal resin 3D printing: DLP (Digital Light Processing), FluidFM, SLA (Stereolithography)

Metal 3D printing FAQ

Is 3D printed metal strong?

Metal 3D printed parts can be as strong (or even stronger) as metal parts created with traditional manufacturing processes such as casting. The part’s strength will, however, depend on the metal AM method used and the conditions in which it is 3D printed.

When was 3D metal printing invented?

Metal 3D printing became possible in the 1990s with the development of Selective Laser Melting technology. However, 3D metal printing only started to gain traction and public interest from around 2010 onwards.

How does metal 3D printing work?

There are several ways to 3D print metal. Layers of metal filament can be deposited one after the other, producing a green part that must later go through debinding and sintering steps. It is also possible to fuse metal powder particles together with a laser, or with an inkjet printhead that deposits drops of binding material onto the powder.

10 Best Metal 3D Printers: Buyer's Guide

RECENT STORIES

How To Get an AS9100 Certification

January 4, 2023

 5 min read

HDPE vs. UHMW: Material Differences and Comparisons

December 31, 2022

 6 min read

HDPE vs. ABS: Material Differences and Comparisons

December 31, 2022

 8 min read

There are hundreds of metal 3D printers on the market, and deciding which is best for a specific application can be difficult. To aid in this process the 10 best metal 3D printers have been summarized to assist buyers.

The top three of those ten printers are listed below, along with their specific strong points:

  1. SPEE3D WarpSPEE3D: Highest speed metal 3D printer.
  2. Pollen AM PAM series MC: Largest number of materials printed.
  3. Desktop Metal Production SystemTM: Highest volume production.

This article will discuss the 10 best metal 3D printers on the market, how they work, their key features, and their cost. In addition, some general guidelines about how to select the best 3D metal printer will also be presented.

1. HP Metal Jet®

The HP Metal Jet® is a binder jetting style printer. This type of printer works by laying down a thin layer of metal powder from a build plate adjacent to a material drum. Then, an inkjet head sprays a binding agent on the powder in the shape of the part cross-section. Next, an energy source is passed over the powder to cure the binding agent. This process results in a green part that is finished in a standard sintering oven that both removes the binder and densifies the final part.Binder jetting results in printed parts with more isotropic properties than can be made using laser-based printers. The HP Metal Jet® costs around $400 000.

2. Velo3D® Sapphire

The Velo3D® Sapphire is a powder bed fusion (PBF) style 3D metal printer. It works by laying down a thin layer of metal powder, on which the shape of the current part cross section is traced by 2 x 1 kW lasers. The lasers melt the powder into a fully dense part. This printer has a 315 mm OD (outer diameter) x 1000 mm height build volume and can print advanced nickel alloys like Inconel®. The price of this printer is only available on request from Velo3D®.

3. SPEE3D WarpSPEE3D

The WarpSpEE3D® makes use of a unique supersonic 3D deposition technology that ejects metal powder from a nozzle at supersonic speeds. The high kinetic energy with which the powder hits the build plate causes it to fuse together. This machine has a 6-axis robot arm that orients the build plate and part to allow the print nozzle to deposit material where required. This printing technology is extremely quick. It can deposit material at a rate of 100 grams per minute, making it the fastest metal printer on this list. The machine requires a compressed air supply at 30 bar, with a flow rate capability of 1m3 /min. The price of this printer is only available on request from the SPEE3D.

4. Rapidia Metal 3D Printer

The Rapidia® metal 3D printer makes use of a unique water-binding process to print parts. TheRapidia® works similarly to an FDM (Fused Deposition Modeling) printer, depositing successive layers of a paste consisting of a metal powder plus a binder onto the build platform. Once the part has been completely printed, but before it is sintered, it can be bonded to another part using only water. The part is then sintered in a Rapidia® sintering furnace. Removable supports can also be printed, using a second print nozzle. This printer is simple and accessible due to a large online community for FDM style printers but these benefits come at the cost of a rougher surface finish quality that may require additional post-processing. The Rapidia® costs around $185,000.

5. XJet Carmel 700M

The XJet® Carmel 700M is a style of material jetting printer that deposits a liquid consisting of metal or ceramic nanoparticles suspended in a proprietary fluid carrier, using multiple inkjet-like nozzles. As soon as the layer has been deposited, the binder liquid evaporates due to the elevated temperature in the printer. Every droplet of material deposited by this process is used in the final part, resulting in no material waste. As is the case with standard plastic material jetting printers, high levels of detail are possible with the XJet® Carmel 700M. When the part is done printing it must be sintered to achieve its full, final density. Currently, the only metal this printer can print is stainless steel. The Carmel 700 M costs around $599,000.

6. Pollen AM PAM Series MC

The PAM Series MC is an FDM-style 3D printer that combines injection molding with 3D metal printing. This printer makes use of standard MIM (Metal Injection Molding) pellets as its raw material. This means that it does not make use of proprietary feedstock materials,  and thus has one of the widest selections of materials available. Up to four materials can be printed simultaneously via independent printing nozzles. This printer is not just limited to metals, but can also print thermoplastics and ceramics such as alumina. The Pollen AM PAM Series MC costs around $140,000.

7. Digital Metal DMP2500

The Digital Metal® DM P2500 is a binder jetting-style printer. These types of printers work by laying down a thin layer of powder. An inkjet head then sprays a binding agent on the powder in the shape of the part cross-section. An energy source is passed over the powder to cure the binding agent. This results in a green part that must then be sintered in a sintering oven, there is no need to first de-bind the part. The DM P2500 can produce excellent precision and surface quality, meaning that parts often do not require post-machining. The DM P2500 is also easily incorporated into a fully automated process including the removal of the finished parts from the oven, automatic powder removal, and automatic transfer into a sintering furnace. The price of this printer is only available on request from Digital Metal®.

8. Trumpf TruPrint 1000

The TruPrint® 1000 is a powder bed fusion (PBF) metal printer that works by laying down a thin layer of metal powder. Next, either one or multiple lasers will trace out the current part cross-section, melting the powder into a fully dense part. The TruPrint® 1000 can automatically swap out multiple build plates to maximize productivity without stopping the machine. TruPrint® 1000 can be customized for different industries such as: dental plates, jewelry, laboratory equipment, or industrial fabrication of small series custom equipment. The price of this printer is only available on request from the Trumpf®.

9. DesktopMetal Production

Desktop Metal Production SystemTM is a binder jetting printer. The Desktop Metal version of this technology makes use of a unique method called single-pass jetting (SPJ). This 3D printer works by first depositing a layer of powder onto the build plate. The powder is precisely metered from the print head, in contrast to another binder jetting technology like MJF (Multi-Jet Fusion) that spreads a thin layer from a powder container next to the build plate. Immediately after depositing the powder, a compaction roller compresses the powder to a constant layer height. Next, a binder is applied in the shape of the part cross-section. This process is repeated until the part (called a green part) is completely printed. This green part then undergoes a cross-linking phase that slightly strengthens the part prior to powder removal. It is then referred to as a “brown part.” The brown parts are sintered in a furnace that evaporates the binder and fuses the powder into a fully dense, final part. The price of this printer is only available on request from Desktop Metal.

10. DesktopMetal Studio 2

This printer makes use of FDM technology called “bound metal deposition,” which works by extruding a metal powder mixed with a thermoplastic binder. The part is printed one layer at a time while a second nozzle deposits support material. When the part is complete, it can be placed into a furnace for debinding and sintering. The bound metal deposition process eliminates the process step of chemical debinding prior to sintering, and therefore reduces the manufacturing time. The Desktop Metal Studio SystemTM 2 costs around $120,000.

What Is a 3D Printer?

A 3D printer produces parts by building up the material into the desired part, as opposed to traditional subtractive technologies, in which the excess is cut away from a block of raw material to reveal the final part. 3D printers are able to produce parts printed in thermoplastics, photopolymers, ceramics, and metals. 

For more information, see our guide on 3D Printing.

How To Choose the Best Metal 3D Printers

In choosing the best metal 3D printers, there are several factors to consider, including:

  1. Right Technology: Despite its capabilities, metal printing is a niche technology when compared to more established metal processing technologies like CNC machining or metal injection molding. For that reason, it is important to first confirm that a metal 3D printer is, in fact, the best solution for a given application. Some parts will still be cheaper and faster to produce using traditional techniques. 
  2. Material to be Printed: Most 3D metal printers can only print a limited range of materials. This fact will play a major role in choosing a 3D printer. 
  3. Cost: There must be a clear business case for purchasing a machine. An advanced high-production machine may not be necessary when the likely production volume and profit are weighed against the cost of 3D printing. 
  4. Technology of the Printer: Most metal printing technologies can produce parts that have properties close enough to their nominal bulk properties so as to make them well suited to their end-use applications. 

How Do Experts Determine the Best Metal 3D Printer?

Experts determine the best metal 3D printer for an application based on the underlying business case. If a low-cost printer is able to achieve the required part metrics, then it is a better choice than an advanced, high-cost machine. Ultimately, the tool is selected based on the requirements of the end part, such as: mechanical strength, unit cost, raw materials, and speed of production. The machine that best meets the requirements at the lowest cost is the best machine for that situation.

What Makes a Metal 3D Printer the Best?

The main factor that defines a metal 3D printer as “the best” is its ability to meet the required part specifications at the lowest cost. The specific printer technology is not as important as selecting a system that can achieve all of the required results. For example, an FDM style printer is better suited to hobbyist applications due to lower costs. However, for end-use components for high-performance parts, a laser-based printer may be better suited.

What is the Best Metal 3D Printer for Beginners?

The best beginner-friendly metal 3D printers are listed below:

  1. Desktop Metal Studio System™ 2: Desktop Metal Studio System™ 2 is the best printer for beginners because it is low cost, can produce fully functional metal parts, and has a simple two-part process.
  2. Pollen Pam Series MC: This printer is able to print almost any material. It can make use of standard injection molding materials, making it both a low-cost and very accessible printer. 
  3. Rapidia Metal 3D Printer: This printer makes use of familiar technology, i,e, FDM (Fused Deposition Modeling). The parts can be simply fused with water prior to sintering, allowing for the manufacturing of very complex parts. 
Is a Metal 3D Printer Useful?

Yes, metal 3D printers can be used for a wide range of applications, especially in the aerospace, medical, and automotive industries. 

Summary

This article presented the best metal 3D printers, explained what they are, and discussed the different capabilities of each. To learn more about metal 3D printers, contact a Xometry representative.

Xometry provides a wide range of manufacturing capabilities, including 3D printing and other value-added services for all of your prototyping and production needs. Visit our website to learn more or to request a free, no-obligation quote.

Copyright and Trademark Notices
  1. HP METAL JET is a registered trademark of HP Hewlett Packard Group LLC.
  2. Velo3D Sapphire is a registered trademark of Velo3D, Inc.
  3. Inconel® is a registered trademark of Special Metals Corporation
  4. DESKTOP METAL, Production SystemTM, Studio SystemTM is a trademark of Desktop Metal, Inc.
  5. WarpSpEE3D® s a trademark of Effusiontech Pty Ltd PROPRIETARY LIMITED COMPANY
  6. Rapidia® is a trademark of Tech Inc BC company 
  7. XJet® is a trademark of  Xjet, Inc. CORPORATION
  8. DIGITAL METAL® is a trademark of AB CORPORATION
  9. Truprint® & trumpf® is a trademark of TRUMPF SE + Co. KG GMBH & CO. KG FED REP
Disclaimer

The content appearing on this webpage is for informational purposes only. Xometry makes no representation or warranty of any kind, be it expressed or implied, as to the accuracy, completeness, or validity of the information. Any performance parameters, geometric tolerances, specific design features, quality and types of materials, or processes should not be inferred to represent what will be delivered by third-party suppliers or manufacturers through Xometry’s network. Buyers seeking quotes for parts are responsible for defining the specific requirements for those parts. Please refer to our terms and conditions for more information.

Team Xometry

This article was written by various Xometry contributors. Xometry is a leading resource on manufacturing with CNC machining, sheet metal fabrication, 3D printing, injection molding, urethane casting, and more.

How metal 3D printers work. Overview of SLM and DMLS technologies. additive manufacturing. 3D metal printing.


Metal 3D printing. Additive technologies.

SLM or DMLS: what's the difference?

Hello everyone, Friends! 3DTool is with you!

BLT metal 3D printer catalog

Selective laser melting ( SLM ) and direct metal laser sintering ( DMLS ) are two additive manufacturing processes that belong to the family of 3D printing using the powder layer method. The two technologies have much in common: they both use a laser to selectively melt (or melt) metal powder particles, bonding them together and creating a pattern layer by layer. In addition, the materials used in both processes are metals in granular form.

The differences between SLM and DMLS come down to the basics of the particle bonding process: SLM uses metal powders with a single melting point and completely melts the particles, while in DMLS the powder consists of materials with variable melting points. nine0014


Specifically:
SLM produces single metal parts while DMLS produces metal alloy parts.
Both SLM and DMLS technologies are used in industry to create final engineering products. In this article, we will use the term "metal 3D printing" to summarize the 2 technologies. We will also describe the main mechanisms of the manufacturing process that are necessary for engineers to understand the advantages and disadvantages of these technologies. nine0002 There are other manufacturing processes for producing dense metal parts, such as electron beam melting (EBM) and ultrasonic additive manufacturing (UAM). Their availability and distribution is rather limited, so they will not be presented in this article.

How 3D printing with SLM or DMLS metal works.

How does metal 3D printing work? The basic manufacturing process for SLM and DMLS is very similar.

1. The printing chamber is first filled with an inert gas (such as argon) to minimize the oxidation of the metal powder. It then heats up to the optimum operating temperature. nine0002 2. A layer of powder is spread over the platform, a powerful laser makes passes along a predetermined path in the program, fusing the metal particles together and creating the next layer.
3. When the sintering process is completed, the platform moves down 1 layer. Next, another thin layer of metal powder is applied. The process is repeated until the entire model is printed.

When the printing process is completed, the metal powder already has strong bonds in the structure. Unlike the SLS process, parts are attached to the platform via support structures. The support in metal 3D printing is created from the same material as the base part. This condition is necessary to reduce deformations that may occur due to high processing temperatures. nine0002 When the 3D printer's chamber cools down to room temperature, excess powder is removed manually, such as with a brush. The parts are then typically heat treated while they are still attached to the platform. This is done to relieve any residual stresses. They can then be further processed. The removal of the part from the platform occurs by means of sawing.

Scheme of operation of a 3D printer for metal.

In SLM and DMLS, almost all process parameters are set by the manufacturer. The layer height used in metal 3D printing varies from 20 to 50 microns and depends on the properties of the metal powder (fluidity, particle size distribution, shape, etc.). nine0002 The basic size of the print area on metal 3D printers is 200 x 150 x 150 mm, but there are also larger sizes of the working area. Printing accuracy is from 50 - 100 microns. As of 2020, metal 3D printers start at $150,000. For example, our company offers 3D metal printers from BLT.
metal 3D printers can be used for small batch production, but the 3D printing capabilities of such systems are more like those of mass production on FDM or SLA machines. nine0002 The metal powder in SLM and DMLS is recyclable: typically less than 5% is consumed. After each impression, the unused powder is collected and sieved, and then topped up with fresh material to the level required for the next production.
Waste in metal printing, are supports (support structures, without which it will not be possible to achieve a successful result). With too much support on the manufactured parts, the cost of the entire production will increase accordingly. nine0002

Adhesion between coats.


3D metal printing on BLT 3D printers

SLM and DMLS metal parts have almost isotropic mechanical and thermal properties. They are hard and have very little internal porosity (less than 0.2% in 3D printed condition and virtually non-existent after processing).
Metal printed parts have higher strength and hardness and are often more flexible than traditionally made parts. However, such metal becomes “tired” faster. nine0014

3D model support structure and part orientation on the work platform.

Support structures are always required when printing with metal, due to the very high processing temperatures. They are usually built using a lattice pattern.

Supports in metal 3D printing perform 3 functions:

• They form the basis for creating the first layer of the part.
• They secure the part to the platform and prevent it from deforming.
• They act as a heat sink, removing heat from the model. nine0014

Parts are often oriented at an angle. However, this will increase the amount of support required, the printing time, and ultimately the overall cost.
Deformation can also be minimized with laser sintering templates. This strategy prevents the accumulation of residual stresses in any particular direction and adds a characteristic surface texture to the part.

Since the cost of metal printing is very high, software simulations are often used to predict how a part will behave during processing. These topology optimization algorithms are otherwise used not only to increase mechanical performance and create lightweight parts, but also to minimize the need for supports and the likelihood of part distortion. nine0014

Hollow sections and lightweight structures.


An example of printing on a BLT 3D printer

Unlike polymer powder melt processes such as SLS, large hollow sections are not typically used in metal printing as the support would be very difficult to remove, if at all possible.
For internal channels larger than Ø 8 mm, it is recommended to use diamond or teardrop cross-sections instead of round ones, as they do not require support. More detailed recommendations on the design of SLM and DMLS can be found in other articles on this topic. nine0014

As an alternative to hollow sections, parts can be made with sheath and cores, which in turn are machined using different laser power and pass speeds, resulting in different material properties. The use of sheath and cores is very useful when making parts with a large solid section, as it greatly reduces printing time and reduces the chance of warping.

The use of a lattice structure is a common strategy in metal 3D printing to reduce part weight. Topology optimization algorithms can also help design organic lightweight shapes. nine0014

Consumables for 3D metal printing.

SLM and DMLS technologies can produce parts from a wide range of metals and metal alloys, including aluminum, stainless steel, titanium, cobalt, chromium and inconel. These materials meet the needs of most industrial applications, from aerospace to medical applications. Precious metals such as gold, platinum, palladium and silver can also be processed, but their use is of a minor nature and is mainly limited to jewelry making. nine0014

The cost of metal powder is very high. For example, a kilogram of 316 stainless steel powder costs approximately $350-$450. For this reason, minimizing part volume and the need for supports is key to maintaining optimal manufacturing cost.
The main advantage of metal 3D printing is its compatibility with high-strength materials such as nickel or cobalt-chromium superalloys, which are very difficult to machine with traditional methods. Significant cost and time savings can be achieved by using metal 3D printing to create a near-clean shape part. Subsequently, such a part can be processed to a very high surface quality. nine0002

Metal post-processing.

Various post methods. treatments are used to improve the mechanical properties, accuracy and appearance of metal printed products.
Mandatory post-processing steps include the removal of loose powder and support structures, while heat treatment (heat annealing) is typically used to relieve residual stresses and improve the mechanical properties of the part.

CNC machining can be used for critical features (such as holes or threads). Sandblasting, plating, polishing, and micro-machining can improve the surface quality and fatigue strength of a metal printed part. nine0014

Advantages and disadvantages of metal 3D printing.

Pros:

1. Metal 3D printing can be used to make complex custom parts, with geometries that traditional manufacturing methods cannot provide.
2. Metal 3D printed parts can be optimized to increase their performance with minimal weight.
3. Metal 3D printed parts have excellent physical properties, metal 3D printers can print a wide range of metals and alloys. Includes difficult-to-machine materials and metal superalloys. nine0014

Cons:

1. Manufacturing costs associated with metal 3D printing are high. The cost of consumables is from $ 500 per 1 kg.
2. The size of the working area in metal 3D printers is limited.

Conclusions.

• Metal 3D printing is most suitable for complex, one-piece parts that are difficult or very expensive to manufacture using traditional methods, such as CNC.
• Reducing the need for building supports, will significantly reduce the cost of printing with metal. nine0002 • 3D printed metal parts have excellent mechanical properties and can be made from a wide range of engineering materials, including superalloys.

And that's all we have! We hope the article was useful to you.

Catalog of 3D printers for metal BLT

You can purchase metal 3d printers, as well as any other 3d printers and CNC machines, by contacting us:

• By email: [email protected]

• By phone: 8(800)775-86-69

• Or on our website: http://3dtool.ru

Also, don't forget to subscribe to our YouTube channel:


Subscribe to our groups in social networks:

INSTAGRAM

In contact with

Facebook

Steel 3D Printing - Quick Guide nine0014

Any metal 3D printing technology can print with steel. This is the most popular material. But which steel grades and which technology is best for your application? Will printed steel parts really be as strong and durable as traditionally made parts?

Let's see how a 3D printed steel part revolutionizes manufacturing and opens the door to new applications in aerospace, medical equipment, automotive, tool making, heavy industry, architecture and more. In addition, more affordable desktop printers are expanding the scope and scope of real steel 3D printed parts. nine0014

Strength of steel printed parts.

Cast steel part (left), 3D printed version (center). On the right, a fully 3D printed hinge requires no assembly. (Source: Desktop Metal)

The most common question when it comes to a 3D printed metal model is "Will it be as strong as a forged or cast part?" ?". The short answer is yes... and no.

3D printed steel parts can be just as strong, and sometimes even stronger, than those made in the traditional way. It depends on many factors such as: end use, type of steel, choice of 3D printing method, post-processing and shape of the part. Also, the comparison depends on which of the strength characteristics you focus on: tensile strength, static load strength, fatigue strength, etc. nine0014

Parts printed from steel are used in the aerospace industry, for the military, as well as, for example, for the manufacture of a footbridge, shown below. Therefore, the strength of printed products is beyond doubt, but let's take a closer look.

Queen Maxima of the Netherlands officially opens a 3D printed metal bridge. Photo by Adriaande Groot (Source: MX3D)

A 3D printed or laser powder sintered (LPBF) steel part has a finer grain structure than cast metal products. This provides better tensile strength characteristics, but in other respects the cast parts are currently still stronger. Most often, LPBF 3D printing is used to replace cast components, but in some cases, 3D printed components can replace forged parts. nine0014

One study showed that, under certain conditions, stainless steel parts made using LPBF 3D printers were three times stronger than parts made from the same steel using the traditional method.

In experiments comparing 3D printed steel parts to traditionally made steel parts, researchers create identical parts using two methods and compare their performance. However, head-to-head comparison of details is only part of the big picture. nine0014

The main advantage of printing with steel is not only its strength, but also the unique ability to create internal channels and lattice fillings in parts, which is impossible with traditional manufacturing methods. Metal 3D printing makes it possible to produce parts faster than traditional production, since this method does not require the use of special equipment and tools, it allows you to create assemblies as a whole, eliminating the need for subsequent assembly and welding. Designing a printed part usually means that less metal is needed to make it, and therefore less weight, for the same strength. nine0014 MX3D Wire Arc Additive Manufacturing (WAAM) printed steel architectural support (Source: MX3D)

Steel 3D printing is also more stable and cost effective as it reduces waste. When using subtractive manufacturing methods, such as CNC machining, you make a part by cutting it out of a large one, with a lot of waste. With additive manufacturing, you only use the material you need to make the finished product. nine0014

Steel 3D printing is not intended to replace traditional methods in all areas, but it may be a better choice for a wide range of applications. Particularly when the required parts are unique and designed for specific applications, such as rocket engines, racing cars or the oil and gas industry. 3D printing is the fastest and most flexible technology for mass production and prototype production. For military and industrial applications, steel 3D printing is a faster and more efficient way to create individual parts for vehicles and machines. Stainless steel 3D printing is rapidly finding applications in medicine to create unique surgical instruments and implants. nine0014

If you know what characteristics your final product should have (tensile strength, compressive strength, hardness, density, etc.), then all these parameters can be incorporated into the product at the production stage.

Kinds of steel for 3D printing

Metal powder is the most used metal material for 3D printing (Source: GKN Additive)

There are thousands of kinds of different steel grades and alloys with different mechanical properties, used in traditional manufacturing but in 3D printing there are only a few dozen of them, and some of them are unique, created specifically for this technology. Among the steel options, the following can be distinguished:

  • Stainless steel (316L, 304L , 17-4PH, 15-5PH, 420, 254, Ph2, GP1, 630, 410).

  • Tool steel (D2, M2, h23, h21, MS1, 1.2709).

  • Low alloy steel (4140).

  • Structural alloyed (20MnCr5).

Recently, unique alloys have been developed specifically for 3D printing, designed to solve the problems that occur with classical production methods. nine0014

For example, 3D printer manufacturer Desktop Metal released a patented stainless steel in 2022 that the company says combines the tensile strength, ductility, and corrosion resistance of 13-8 PH stainless steel, combined with the hardness low alloy steel like 4140. The company says customers can go to market with this material and skip the galvanizing step to protect products from corrosion.

ExOne offers two special blends of steel and bronze that the company says allows 3D printed steel parts to have enhanced corrosion resistance while being easy to machine and polish. nine0014

While most of the metal powders used in 3D printing are similar to those used for other manufacturing methods, their numbers are on the rise as more companies adopt the technology. Some metal powder manufacturers, such as GKN, also make custom powders for specific 3D printing applications.

How to print with steel

The strength, properties, and applications of 3D printed steel products largely depend on which 3D printing technology you use. Some methods produce stronger parts, other methods provide better hardness or abrasion resistance, and some technologies are simply very fast. nine0014

Below are the main metal 3D printing methods, their properties and some of the most common application examples.

Fused Deposition Printing (FDM)

BCN3D's Epsilon printer extrudes metal filament from stainless steel (Source: BCN3D) as more printer manufacturers certify metallic filaments for use on their printers, such as Ultimaker, BCN3D, Makerbot, Raise3D. Raise3D has recently released a complete metal printing suite - Metalfuse (3D printer, debinding oven and sintering oven). This method is still much more popular for printing plastics, but with new plastic filaments filled with stainless steel powder, strong metal parts can be produced. nine0014

FDM media was once limited to thermoplastics. Companies like BASF Forward AM and The Virtual Foundry now offer metal filaments that can be used on almost any FDM printer as long as it has a hardened steel nozzle for abrasive media.

These materials are approximately 80% metal and 20% plastic. After printing, the post-processing process removes the plastic, resulting in 100% metal parts. nine0014

Due to the removal of the bonding plastic, FDM metal parts shrink during post-processing. The amount of shrinkage is constant and can be taken into account in CAD systems, which allows to obtain relatively accurate finished parts.

Forward AM's 316L Stainless Steel Ultrafuse filament produces finished parts with material properties that the company claims are comparable to injection molded metal parts. nine0014 (Source: BCN3D)

While 3D printing with metallic materials may not be suitable for high strength applications such as aerospace, the economics of producing simple metal components without critical loads on an affordable FDM printer can outweigh the impossibility of applying them in some areas.

Metal prototype parts and finished parts that will not be subjected to extreme stress are ideal uses for this technology. nine0014

Bound Metal Deposition (BMD)

Desktop Metal's Studio System 3D printer used bonded metal bars that were extruded layer by layer to form a metal part. Metal mesh deposition method (BMD) or bonded powder extrusion (BPE) is a 3D printing process based on extrusion. This method uses bonded metal rods or bonded powdered metal filaments, which consist of a much higher percentage of metal powder than the filaments used in FDM. As with FDM, post-treatment to remove the binder and heat treatment in a final sintering oven are required. nine0014

There are only a few 3D printers using this method such as Desktop Metal, Markforged and more recently 3DGence, but more companies are entering this market, so stay tuned. These printers are valued as a convenient solution for office 3D metal printing, they are more expensive than most FDM printers, but cheaper than the powder-based metal 3D printing technologies described below.

These printers use their own proprietary filament. Desktop Metal and Markforged offer four types of steel. nine0014

Ideal niches for this technology are metal prototype parts, where it is necessary to test the functionality of a part before mass production using traditional methods. Popular applications are molds, punching dies, nozzles, impellers, fasteners and heat exchangers.

For example, Shukla Medical uses Markforged's Metal X printer to print steel prototypes of its orthopedic implant removal tools. nine0014

Laser powder sintering.

Laser powder sintering technology uses one or more lasers to melt powdered metal into a desired shape layer by layer (Source: GE Additive) metal printing. This technology is used by 80% of all metal 3D printers on the market.

This method uses powerful lasers to selectively sinter metal powder layer by layer. nine0014

LPBF 3D printers come in a wide range of sizes, prices and laser powers. These and other characteristics affect the properties of the finished part, print speed and other parameters of the finished products.

Steel and steel alloys are the most popular material for LPBF equipment and, unlike FDM and BMD, metal powders are commercially available as they are most commonly used in traditional production methods.

LPBF is a technology that maximizes the quality of a 3D printed part. Applications include aerospace components such as monolithic thrust chambers, rocket engine components and heat exchangers, molds, tools and other applications, as well as high wear parts and surgical instruments. nine0014

Binder Jetting

Binder 3D printing technology uses metal powder and a binder to form metal parts (Sorrce: ExOne) binder, and not with a laser. During post-processing, the binder is removed.

Binder application stands out for its high printing speed compared to other 3D printing methods or traditional manufacturing, and metal parts made with this technology have material properties equivalent to those made by metal injection molding. nine0014

The number of manufacturers producing metal-bonded inkjet 3D printers is much smaller than that of LPBF machines. Leading manufacturers include ExOne, Desktop Metal, Digital Metal, GE Additive and HP.

Binder blasting is ideal for medium to high volume production of metal tools and spare parts.

In fact, HP claims that its Metal Jet 3D printer was designed specifically for mass production of 316L stainless steel products. HP has partnered with Parmatech to produce metal parts for the medical industry. Pennsylvania-based ExOne uses this technology to manufacture hard metal cutting tools and tool steels. nine0014

Electron Beam Melting (EBM)

(Source: GE Additive)

Electron Beam Melting (EBM) is another powder cladding technology. It works in a similar way to selective laser melting (SLM), but instead of using a laser as the energy source, it uses a much more powerful beam of charged particles.

The recoater moves the powder onto the printing plate and an electron beam selectively melts each layer of powder. After each layer is printed, the plate is lowered and another one is applied on top of the previous layer. nine0014

EBM can be much faster than SLM, but SLM produces smoother and more accurate pieces. The electron beam is wider than the laser beam, so EBM cannot produce the same precise parts as SLM. Another difference is that the manufacturing process takes place in a vacuum chamber, which reduces the amount of impurities in the material that can lead to defects. That is why EBM is often chosen for printing components for the aerospace, automotive, defense, petrochemical and medical implant industries. nine0014

Titanium is the most popular metal for most EBM applications, however steel can be used.

Cold Spray

(Source: Impact Innovations)

Cold spray 3D printing is done by injecting metal powders through a jet nozzle into a supersonic stream of pressurized gases such as air, nitrogen, or helium. The process is called "cold" because the metal particles do not melt, but hit the metal substrate and adhere to its surface during the so-called plastic deformation. nine0014

Cold spray printed products are not prone to porosity, thermal cracking and other defects associated with melt-based technologies. This method has several advantages over other production methods. The technology is used in the military and aerospace industries around the world. For example, the US Army uses cold spray to repair the mounts of a worn Bradley 25mm steel turret gun.

In the automotive industry, cold spray steel is used for crash repairs because the high strength steel substrates in cars can be susceptible to thermal repair methods such as welding. nine0014

Direct Energy Deposition (DED) and Wire Arc Additive Manufacturing (WAAM)

WAAM Steel Parts from MX3D (Source: MX3D)

Direct Energy Deposition (DED) uses welding powder or wire that enters through a nozzle and is fed into the power source to melt the metal. A melt region is created and applied to the substrate. DED is a new process, reminiscent of an old building technology known as "cladding", in which a coating is applied to a substrate, often for thermal insulation or weather resistance. DED is useful for fabricating large objects as a whole, as well as complex geometries that require extensive machining. DED can get such parts much closer to finished than traditional CNC machining. nine0014

Because DED uses a coating process, it can be used to add complex geometries to existing steel parts, thus combining complexity with cost reduction. For example, the French company AddUp advertises a rocket nozzle that uses a preformed large 304 stainless steel hopper cone printed with an isogrid structure, usually made from a larger piece by traditional methods.

A technology related to DED is wire-arc additive manufacturing (WAAM). Instead of powder, WAAM uses a metal wire that is melted by an electric arc. The process is controlled by robotic arms. WAAM is also capable of producing large-sized metal parts, as demonstrated by the Dutch company MX3D and its nine thousand-pound 41-foot stainless steel bridge in Amsterdam, as well as an oil and gas equipment repair part, proving that parts can be made in the field. nine0014

Micro 3D printing

Micro parts printed from steel (Source: 3D MicroPrint)

Micro scale additive manufacturing, or micro 3D printing, can produce products with a resolution of a few microns (or less). There are three micro 3D printing methods to produce metal parts.

LMM (lithography-based metal fabrication) is a light-based technology that creates tiny parts from raw materials, including stainless steel, for applications such as surgical instruments and micro-mechanical parts. nine0014

Electrochemical deposition is the latest micrometal 3D printing process developed by the Swiss company Exaddon. In this process, the printing nozzle applies liquid with metal ions, creating details at the atomic level.


Learn more