Reddit 3d printer buying guide


Purchase Advice Megathread - January 2022 : 3Dprinting

Happy New Year Everyone! Welcome back to another purchase megathread!

For a link to last month's post, see here.

This thread is meant to conglomerate purchase advice for both newcomers and people looking for additional machines. Keeping this discussion to one thread means less searching should anyone have questions that may already have been answered here, as well as more visibility to inquiries in general, as comments made here will be visible for the entire month stuck to the top of the sub, and then linked to in the next month's thread.

If you are new to 3D printing, and are unsure of what to ask, try to include the following in your posts as a minimum:

  • Your budget, set at a numeric amount. Saying "cheap," or "money is not a problem" is not an answer people can do much with. 3D printers can cost $100, they can cost $10,000,000, and anywhere in between. A rough idea of what you're looking for is essential to figuring out anything else.

  • Your country of residence.

  • If you are willing to build the printer from a kit, and what your level of experience is with electronic maintenance and construction if so.

  • What you wish to do with the printer.

  • Any extenuating circumstances that would restrict you from using machines that would otherwise fit your needs (limited space for the printer, enclosure requirement, must be purchased through educational intermediary, etc).

While this is by no means an exhaustive list of what can be included in your posts, these questions should help paint enough of a picture to get started. Don't be afraid to ask more questions, and never worry about asking too many. The people posting in this thread are here because they want to give advice, and any questions you have answered may be useful to others later on, when they read through this thread looking for answers of their own. Everyone here was new once, so chances are whoever is replying to you has a good idea of how you feel currently.

Additionally, a quick word on print quality: Most FDM/FFF (that is, filament based) printers are capable of approximately the same tolerances and print appearance, as the biggest limiting factor is in the nature of extruded plastic. Asking if a machine has "good prints," or saying "I don't expect the best quality for $xxx" isn't actually relevant for the most part with regards to these machines. Should you need additional detail and higher tolerances, you may want to explore SLA, DLP, and other photoresin options, as those do offer an increase in overall quality. If you are interested in resin machines, make sure you are aware of how to use them safely. For these safety reasons we don't usually recommend a resin printer as someone's first printer.

As always, if you're a newcomer to this community, welcome. If you're a regular, welcome back.

Purchase Advice Megathread - June 2022 : 3Dprinting

Welcome back to another purchase megathread!

For a link to last month's post, see here. Last months top comment was by u/jtl626 which can be found here.

This thread is meant to conglomerate purchase advice for both newcomers and people looking for additional machines. Keeping this discussion to one thread means less searching should anyone have questions that may already have been answered here, as well as more visibility to inquiries in general, as comments made here will be visible for the entire month stuck to the top of the sub, and then linked to in the next month's thread.

If you are new to 3D printing, and are unsure of what to ask, try to include the following in your posts as a minimum:

  • Your budget, set at a numeric amount. Saying "cheap," or "money is not a problem" is not an answer people can do much with. 3D printers can cost $100, they can cost $10,000,000, and anywhere in between. A rough idea of what you're looking for is essential to figuring out anything else.

  • Your country of residence.

  • If you are willing to build the printer from a kit, and what your level of experience is with electronic maintenance and construction if so.

  • What you wish to do with the printer.

  • Any extenuating circumstances that would restrict you from using machines that would otherwise fit your needs (limited space for the printer, enclosure requirement, must be purchased through educational intermediary, etc).

While this is by no means an exhaustive list of what can be included in your posts, these questions should help paint enough of a picture to get started. Don't be afraid to ask more questions, and never worry about asking too many. The people posting in this thread are here because they want to give advice, and any questions you have answered may be useful to others later on, when they read through this thread looking for answers of their own. Everyone here was new once, so chances are whoever is replying to you has a good idea of how you feel currently.

Additionally, a quick word on print quality: Most FDM/FFF (that is, filament based) printers are capable of approximately the same tolerances and print appearance, as the biggest limiting factor is in the nature of extruded plastic. Asking if a machine has "good prints," or saying "I don't expect the best quality for $xxx" isn't actually relevant for the most part with regards to these machines. Should you need additional detail and higher tolerances, you may want to explore SLA, DLP, and other photoresin options, as those do offer an increase in overall quality. If you are interested in resin machines, make sure you are aware of how to use them safely. For these safety reasons we don't usually recommend a resin printer as someone's first printer.

As always, if you're a newcomer to this community, welcome. If you're a regular, welcome back.

Building a home 3D printer with your own hands: recommendations from personal experience

3D printing and assembly of 3D printers is my hobby and passion. Here I will not share detailed diagrams and drawings, there are more than enough of them on specialized resources. The main goal of this material is to tell you where to start, where to dig and how to avoid mistakes in the process of assembling a home 3D printer. Perhaps one of the readers will be inspired by applied engineering achievements.

Why do you need a 3D printer? Use cases

I first came across the idea of ​​3D printing back in the 90s when I was watching the Star Trek series. I remember how impressed I was by the moment when the heroes of the cult series printed the things they needed during their journey right on board their starship. They printed anything: from shoes to tools. I thought it would be great someday to have such a thing too. Then it all seemed something incredible. Outside the window are the gloomy 90s, and the Nokia with a monochrome screen was the pinnacle of progress, accessible only to a select few.

Years passed, everything changed. Around 2010, the first working models of 3D printers began to appear on sale. Yesterday's fantasy has become a reality. However, the cost of such solutions, to put it mildly, discouraged. But the IT industry would not be itself without an inquisitive community, where there is an active exchange of knowledge and experience and who just let them dig into the brains and giblets of new hardware and software. So, drawings and diagrams of printers began to surface more and more often on the Web. Today, the most informative and voluminous resource on the topic of assembling 3D printers is RepRap - this is a huge knowledge base that contains detailed guides for creating a wide variety of models of these machines.

I assembled the first printer about five years ago. My personal motivation to build my own device is quite prosaic and based on several factors. Firstly, there was an opportunity to try to realize the old dream of having your own device, inspired by a fantasy series. The second factor is that sometimes it was necessary to repair some household items (for example, a baby stroller, car elements, household appliances and other small things), but the necessary parts could not be found. Well, the third aspect of the application is "near-working". On the printer, I make cases for various IoT devices that I assemble at home.

Agree, it is better to place your device based on Raspberry Pi or Arduino in an aesthetically pleasing "body", which is not a shame to put in an apartment or take to the office, than to organize components, for example, in a plastic bowl for food. And yes, you can print parts to build other printers :)

There are a lot of scenarios for using 3D printers. I think everyone can find something of their own.

A complex part in terms of drawing that I printed on my printer. Yes, it's just a figurine, but it has many small elements

Ready solution vs custom assembly

When a technology has been tested, its value in the market decreases markedly. The same thing happened in the world of 3D printers. If earlier a ready-made solution cost simply sky-high money, then today acquiring such a machine is more humane for the wallet, but nevertheless not the most affordable for an enthusiast. There are a number of solutions already assembled and ready for home use on the market, their price range ranges from $500-700 (not the best options) to infinity (adequate solutions start from a price tag of about $1000). Yes, there are options for $150, but we, for understandable, I hope, reasons, will not dwell on them.

In short, there are three cases to consider a finished assembly:

  • when you plan to print not much and rarely;
  • when print accuracy is critical;
  • you need to print molds for mass production of parts.

There are several obvious advantages to self-assembly. The first and most important is cost. Buying all the necessary components will cost you a maximum of a couple of hundred dollars. In return, you will receive a complete 3D printing solution with the quality of manufactured products acceptable for domestic needs. The second advantage is that by assembling the printer yourself, you will understand the principles of its design and operation. Believe me, this knowledge will be useful to you during the operation of even an expensive ready-made solution - any 3D printer needs to be serviced regularly, and it can be difficult to do this without understanding the basics.

The main disadvantage of assembly is the need for a large amount of time. I spent about 150 hours on my first build.

What you need to assemble the printer yourself

The most important thing here is the presence of desire. As for any special skills, then, by and large, in order to assemble your first printer, the ability to solder or write code is not critical. Of course, understanding the basics of radio electronics and basic skills in the field of mechanics (that is, "straight hands") will greatly simplify the task and reduce the amount of time that needs to be spent on assembly.

Also, to start we need a mandatory set of parts:

  • Extruder is the element that is directly responsible for printing, the print head. There are many options on the market, but for a budget build, I recommend the MK8. Of the minuses: it will not be possible to print with plastics that require high temperatures, there is noticeable overheating during intensive work, which can damage the element. If the budget allows, then you can look at MK10 - all the minuses are taken into account there.
  • Processor board. The familiar Arduino Mega is well suited. I didn't notice any downsides to this solution, but you can spend a couple of dollars more and get something more powerful, with a reserve for the future.
  • Control board. I'm using RAMPS 1.4 which works great with the Arduino Mega. A more expensive but more reliable board is Shield, which already combines a processor board and a control board. In modern realities, I recommend paying attention to it. In addition to it, you need to purchase at least 5 microstep stepper motor controllers, for example - A4988. And it's better to have a couple of these in stock for replacement.
  • Heated table. This is the part where the printed element will be located. Heating is necessary due to the fact that most plastics will not adhere to a cold surface. For example, for printing with PLA plastic, the required surface temperature of the table is 60-80°C, for ABS - 110-130°C, and for polycarbonate it will be even higher
    There are also two options for choosing a table - cheaper and more expensive. Cheaper options are essentially printed circuit boards with preheated wiring. To operate on this type of table, you will need to put borosilicate glass, which will scratch and crack during operation. Therefore, the best solution is an aluminum table.
  • Stepper motors. Most models, including the i2 and i3, use NEMA 17 size motors, two for the Z axis and one each for the X and Y axes. Finished extruders usually come with their own stepper motor. It is better to take powerful motors with a current in the motor winding of 1A or more, so that there is enough power to lift the extruder and print without skipping steps at high speed.
  • Basic set of plastic fasteners.
  • Belt and gears to drive it.

Examples of elements appearance: 1) MK8 extruder; 2) Arduino processor board; 3) RAMPS control board; 4) motor controllers; 5) aluminum heated table; 6) NEMA 17 stepper motor; 7) a set of plastic fasteners; 8) drive gears; 9) drive belt

This is a list of items to be purchased. Hardcore users can assemble some of them themselves, but for beginners, I strongly recommend purchasing ready-made solutions.

Yes, you will also need various small things (studs, bearings, nuts, bolts, washers ...) to assemble the case. In practice, it turned out that using a standard m8 stud leads to low printing accuracy on the Z axis. I would recommend immediately replacing it with a trapezoid of the same size.

M8 trapezoid stud for Z axis, which will save you a lot of time and nerves. Available for order on all major online platforms

You also need to purchase customized plastic parts for the X axis, such as these from the MendelMax retrofit kit.

Most parts available at your local hardware store. On RepRap you can find a complete list of necessary little things with all sizes and patterns. The kit you need will depend on the choice of platform (we'll talk about platforms later).

What's the price

Before delving into some aspects of the assembly, let's figure out how much such entertainment will cost for your wallet. Below is a list of parts required for purchase with an average price.

Platform selection

The community has already developed a number of different platforms for assembling printers - the most optimal case designs and the location of the main elements, so you do not have to reinvent the wheel.

i2 and i3 are key platforms for self-assembly printer enclosures. There are also many modifications of them with various improvements, but for beginners, these two classic platforms should be considered, since they do not require special skills and fine-tuning.

Actually, illustration of platforms: 1) i2 platform; 2) i3 platform

On the plus side of i2: it has a more reliable and stable design, although it is a little more difficult to assemble; more opportunities for further customization.

The i3 variant requires more special plastic parts to be purchased separately and has a slow print speed. However, it is easier to assemble and maintain, and has a more aesthetically pleasing appearance. You will have to pay for simplicity with the quality of printed parts - the body has less stability than i2, which can affect print accuracy.

Personally, I started my experiments in assembling printers from the i2 platform. She will be discussed further.

Assembly steps, challenges and improvements

In this block, I will only touch on the key assembly steps using the i2 platform as an example. Full step by step instructions can be found here.

The general scheme of all the main components looks something like this. There is nothing particularly complicated here:

I also recommend adding a display to your design. Yes, you can easily do without this element when performing operations on a PC, but it will be much more convenient to work with the printer this way.

Understanding how all components will be connected, let's move on to the mechanical part, where we have two main elements - a frame and a coordinate machine.

Assembling the frame

Detailed frame assembly instructions are available on RepRap. Of the important nuances - you will need a set of plastic parts (I already talked about this above, but I'd better repeat it), which you can either purchase separately or ask your comrades who already have a 3D printer to print.




The frame of the i2 is quite stable thanks to its trapezoid shape.

This is how the frame looks like with parts already partially installed. For greater rigidity, I reinforced the structure with plywood sheets

Coordinate machine

An extruder is attached to this part. The stepper motors shown in the diagram above are responsible for its movement. After installation, calibration is required along all major axes.

Important - you will need to purchase (or make your own) a carriage for moving the extruder and a mount for the drive belt. Drive belt I recommend GT2.

The carriage printed by the printer from the previous picture after it has been assembled. The part already has LM8UU bearings for guides and belt mount (top)

Calibration and adjustment

So, we completed the assembly process (as I said, it took me 150 hours) - the frame was assembled, the machine was installed. Now another important step is the calibration of this very machine and extruder. Here, too, there are small subtleties.

Setting up the machine

I recommend calibrating the machine with an electronic caliper. Do not be stingy with its purchase - you will save a lot of time and nerves in the process.

The screenshot below shows the correct constants for the Marlin firmware, which must be selected in order to set the correct number of steps per unit of measure. We calculate the coefficient, multiply it, substitute it into the firmware, and then upload it to the board.

Marlin 9 firmware constants0022

For high-quality calibration, I recommend relying on larger numbers in measurements - take not 1-1. 5 cm, but about 10. So the error will be more noticeable, and it will become easier to correct it.

Calibrating the extruder

When the frame is assembled, the machine is calibrated, we start setting up the extruder. Here, too, everything is not so simple. The main task of this operation is to correctly adjust the supply of plastic.

If underfeeding, the printed test item will have noticeable gaps, like test die 1. Conversely, the result will look bloated if plastic is overfed (dice 2)

Getting Started Printing

It remains for us to run some CAD or download ready-made .stl, which describe the structure of the printed material. Next, this structure needs to be converted into a set of commands understandable to our printer. For this I use the Slicer program. It also needs to be set up correctly - specify the temperature, the size of the extruder nozzle. After that, the data can be sent to the printer.

Slicer interface

As a raw material for printing, I recommend starting with regular ABS plastic - it is quite strong, products made from it are durable, and it does not require high temperatures to work with. For comfortable printing with ABS plastic, the table must be heated to a temperature of 110-130 ° C, and the extruder nozzle - within 230-260 ° C.

Some important details. Before printing, calibrate the machine along the Z axis. The extruder nozzle should be approximately half a millimeter from the table and ride along it without distortion. For this calibration, a regular sheet of A4 paper inserted between the nozzle and the surface of the heated table is best suited. If the sheet can be moved with little effort, the calibration is correct.

Another thing to keep in mind is the surface treatment of the heated table. Usually, before printing, the surface of the table is covered with something that hot plastic sticks to well. For ABS plastic, this can be, for example, Kapton tape. The disadvantage of adhesive tape is the need to re-glue it after several printing cycles. In addition, you will have to literally tear off the adhering part from it. All this, believe me, takes a lot of time. Therefore, if it is possible to avoid this fuss, it is better to avoid it.

An alternative option that I use instead of scotch tape is to apply several layers of ordinary light beer, followed by heating the table to 80-100 ° C until the surface is completely dry and re-applying 7-12 layers. It is necessary to apply the liquid with a cloth moistened with a drink. Among the advantages of this solution: ABS plastic separates from the table on its own when it cools down to about 50 ° C and is removed without effort, the table does not have to be peeled off, and one bottle of beer will last you for several months (if you use the drink only for technical purposes :)).

After we have collected and configured everything, we can start printing. If you have an LCD screen, then the file can be transferred for printing using a regular SD card.

The first results may have bumps and other artifacts - do not worry, this is a normal process of "grinding" the printer elements, which will end after a few print cycles.

Tips to make life easier (and sometimes save money)

In addition to the small recommendations given in the text above, in this section I will also give a short list of tips that will greatly simplify the operation of a 3D printer and the life of its owner.

  • Do not experiment with nozzles. If you plan to immediately print from materials that require high temperatures, then it is better to immediately take the MK10 extruder. On MK8, you can "hang" special nozzles that support high-temperature conditions. But such modifications often cause difficulties and require special experience. It is better to avoid this fuss on the shore by simply installing the right extruder for you.
  • Add starter relay for heated table. Improving the power supply system for this important printing part with a starter relay will help solve the known problem of RAMP 1.4 - overheating of the transistors that control the power of the table, which can lead to failure of the board. I made this upgrade after having to throw away a few RAMPS 1.4s.
  • Select the correct filament diameter for printing. I recommend using 1.75mm plastic for MK8 and MK10. If we take plastic, for example, 3 mm, then the extruder simply does not have enough strength to push it at an acceptable speed - everything will be printed much longer, and the quality will drop. ABS plastic is ideal for MK8, MK10 will be able to produce products from polycarbonate.
  • Use only new and precise X and Y guides. Print quality will be affected. It is difficult to count on good quality with bent or deformed guides along the axes.
  • Take care of cooling. During my experiments with various extruders, the MK10 showed the best results - it prints quite accurately and quickly. The MK10 can also print plastics that require a higher print temperature than ABS, such as polycarbonate. Although it is not as prone to overheating as its younger brother MK8, I still recommend taking care of its cooling by adding a cooler to your design. It must be permanently enabled, this option can be configured in Slicer. You can also add coolers to keep the stepper motors at an acceptable temperature, however, make sure that their air flows do not fall on the printed part, as this can lead to its deformation due to too rapid cooling.
  • Consider heat retention. Yes, on the one hand, we are struggling with overheating of the elements. On the other hand, a uniform temperature around the printer will contribute to high-quality printing (the plastic will be more pliable). To achieve a uniform temperature, you can put our printer, for example, in a cardboard box. The main thing is to connect and configure the coolers before that, as described above.
  • Consider insulating your desk. Heated table heats up to high temperatures. And if part of this heat leaves properly, heating the printed part, then the second part (from below) just goes down. To concentrate the heat from the table onto the part, you can perform an operation to insulate it. To do this, I simply attach a cork mouse pad to its bottom using stationery clips.

Pins

I am sure that during the assembly process you will encounter a number of difficulties specific to your project. Neither this text nor even the most detailed guides will insure against this.

As I wrote in the introductory part, the above does not claim the status of a detailed assembly manual. It is almost impossible to describe all the stages and their subtleties within the framework of one such text. First of all, this is an overview material that will help you prepare for the assembly process (both mentally and financially), understand whether you personally need to bother with self-assembly - or give up on everything and buy a ready-made solution.

For me, assembling printers has become an exciting hobby that helps me solve some issues in home and work affairs, take my mind off programming and do something interesting with my own hands. For my children - entertainment and the opportunity to get unusual and unique toys. By the way, if you have children whose age allows them to mess around with such things, such an activity can be a good help for entering the world of mechanics and technology.

For everyone, the vectors of using 3D printers will be very different and very individual. But, if you decide to devote your personal time to such a hobby, believe me, you will definitely find something to print :)

I will be glad to answer comments, remarks and questions.

What to read/see
  • what can be printed;
  • 3D printer forum;
  • RepRap community site with model descriptions and assembly instructions;
  • printer that prints electronics.

Subscribe to the Telegram channel "DOU #tech" so you don't miss new technical articles.

Topics: DIY, embedded, tech

12 common 3D printing mistakes from simple to complex. How to avoid them?

1. Underestimation of the importance of the first layer. 2. Don't ask the 3D printing communities for help. 3. Random entanglement of the filament. 4. Fast assembly of your 3D printer. 5. Incorrect table and nozzle height calibration. 6. Using the wrong slicer settings. 7. Using a high % infill to reinforce details instead of walls/shells. 8. Don't use support when needed. 9. Never replace worn parts. 10. Lack of 3D printing monitoring. 11. Neglect of safety rules in 3D printing. 12. Buying a bad 3D printer out of over-enthusiasm. Conclusion.

There is nothing worse than 3D printing for days, weeks, months and years only to find out that you are making common mistakes.

We're sure many of you are familiar with that feeling, which is why we've written this post to get you back on the road to success by outlining some common mistakes to avoid on your 3D printing journey.

Here you will find both small errors that you did not pay attention to before, as well as serious errors that can lead to a complete cessation of 3D printing.

Join our research to identify the most common 3D printing mistakes, as well as simple solutions to fix them quickly.

1. Underestimation of the importance of the first layer.

Too often 3D printing fails in the middle of the process due to poor adhesion of the first layer.

Definitely keep this important factor in mind if you want a successful print.
This is a mistake that is made too often, and it causes people to chase ghosts, trying to figure out what the problem is.

All this time, the reason was the bad first layers, which did not have a strong enough connection with the working platform.

Although your first layer is held at the start of printing, adhesion decreases as the print head moves. It is likely that your print may shift or fall off after a few hours if the first layer was not well extruded.

Solution .

  • Make a few test prints ahead of time and see how well the material adheres.
  • Use an adhesive such as 3D Printer Varnish or at least a glue stick.
  • Increase the flow rate (extrusion multiplier) for the first layer so the material has a better chance of sticking to the printer bed.

2. Do not seek help from the 3D printing communities.

Every user of a 3D printer has encountered some kind of problem that required some effort to fix. Some people took on entire projects just to solve a 3D printer problem, when the solution was easy to find.

3D printing communities are known for helping people solve their problems, so be sure to check out these free resources. From 3D printing forums to Facebook groups and YouTube surveys of other 3D printer users, the options are endless.

When we first started exploring 3D printing, we noticed that many people mention how helpful other 3D printer users are, so we immediately registered on all kinds of Russian and English resources, Facebook and Reddit communities and joined this space .

In most cases, people will offer the right solution and will be happy to help you try various troubleshooting options.

Not only can they help you with troubleshooting, but they can point you to some fun projects to try, as well as some of the latest innovations in the world of 3D printing.

Solution .

  • Join active Facebook groups on 3D printing and your specific 3D printer.
  • Subscribe to news feeds of authoritative 3D printing resources.
  • Be sure to check out YouTube 3D printing bloggers who post new and interesting content on a regular basis.
  • Find groups in Viber and Telegram. This is the fastest way to get an answer to your question.

3. Random entanglement of the filament.

We read a lot of reviews about 3D printer materials including PLA, ABS, PETG, etc. and some of the negative reviews mention tangled filament.

Unfortunately, in most cases, the thread becomes tangled due to the fault of users.

As a general rule, when the thread is wound onto the spool, there is very little chance of tangling, much more often after you take the spool out of the package.
If you loosen the windings in the winding and then rewind the deflated windings onto the spool, you could accidentally wind them unevenly and create an overlap that will ruin your prints.

Solution .

When storing the filament, make sure that the end is securely fastened and cannot be easily loosened.
If there are already tangles on the spool, unwind enough thread and wind it tightly again so that it does not cross over.

If you are still unlucky, and you have purchased plastic of inadequate quality, during the production of which all technological cards were violated, then here is our advice: buy plastic for a 3D printer from trusted brands. The $100 price difference is infinitesimal compared to all sorts of other 3D printing costs.

However, this 100 UAH will save you not only from problems with overlaps, but also provide a stable diameter and color along the entire length, the absence of ovalities and smooth feeding.

4. Quickly assemble your 3D printer.

We were all very excited when we got our first 3D printer and it came to building it, but being overly excited can cause your 3D printer to build too quickly, resulting in poor print results.

This may not be immediately noticeable and you will get good quality prints within a few months.

What can happen gradually is wear due to incorrect assembly.

Ask yourself these questions before starting your first print.
Was your belt tight? Did you properly and securely fasten each wire? Is the Bowden tube installed correctly?

When it comes to a 3D printer, every little detail counts, so don't fall prey to 3D printing problems because of a quick and careless build.

Solution .

Find an authoritative YouTube video tutorial from an experienced 3D printer operator and follow assembly.
There are always a few little tricks they advise you to do for durability and high quality prints.
Even if you've already built your 3D printer, there are a few things you can fix that you may have missed.
The correct and high-quality assembly of a 3D printer actually leads to higher quality prints.

See also: How to set up your new 3D printer.

5. Incorrect table and nozzle height calibration.

Of all the layers in your 3D print, the first layer is the most important and it depends a lot on how well you leveled your platform and set your nozzle height.

It's not as easy as uploading a 3D model, sending it to an SD card and starting printing.

The software side of things is important, but the hardware side is just as important.

Many 3D printers come with manual platform calibration, so you have to raise or lower each corner yourself.

Your 3D printer doesn't have a perfect feedback system, which means it can't always check where the print head is.

The best he can do is use the X, Y and Z limit switches to make sure the printhead is 0.00mm in each axis.

What your 3D printer is very good at is extremely precise movements in the X, Y and Z axes, but if the nozzle height is not set properly at the beginning, everything falls apart.

The Z axis is height, so the nozzle must be properly adjusted so that it smoothly extrudes the filament along the surface of the build, neither too high nor too low.

Solution .

  • Learn how to manually calibrate the table.
  • Once your table is properly calibrated and the nozzle height adjusted, you can expect good prints.
  • It might be a good idea for you to invest in an auto leveling system like BLTouch. We at our 3D printing studio in Odessa prefer manual calibration.

6. Using incorrect slicer settings.

The slicer settings you use for printing are some of the most important things when it comes to successful 3D printing.

Of the hundreds of setting changes you can make, one wrong setting is enough to ruin your print.

Fortunately, there are printer profiles and default settings that give people a basic starting point for printing.

After a few prints, you will start experimenting with different settings such as temperature, line width, flow rate, and so on.

Some of the misapplied misconfigurations are related to changing materials.

Whether PLA or ABS or PLA of different brands and/or colors, temperature recommendations will vary.

Make sure you set them correctly.

Slicer settings can either help you or break your 3D printing, so use them wisely, preferably with some kind of guide.

In most cases, when you load a model from Thingiverse, for example, designers create a list of settings that generally work well, but don't blindly follow them and be careful.

For example, if you replaced a brass nozzle with a hardened steel nozzle, you would need to slightly increase the nozzle temperature because hardened steel does not conduct heat as well as brass.

Another example is your work surface.

If you have added a glass substrate to your 3D printer, you should increase the table temperature to allow for the extra layer of heat transfer material.

Solution .

  • Use calibration models such as speed and temperature towers for each new material.
  • Spend a little more time looking at the slicer options to make sure you know what changing a setting will do.
  • Repetition is the mother of learning. The more often you type, the faster you will become a pro.

Read also: The best models for 3D printing testing.

7. Using high % infill to reinforce details instead of walls/shells.

For years, most people have tried to reinforce their 3D printed parts with infill. This method definitely does the job, but there is a much more efficient method that has been proven to work much better.

Instead of wasting a lot of material and extra time printing the infill, you should use shells/walls to make the 3D printed part stronger.

In some cases, increasing the percentage of filling does not provide the necessary margin of safety, while increasing the wall thickness makes it possible to produce truly reliable and impact-resistant products.

Solution.

  • Instead of adding more infill, add more shells/walls to your prints to make them stronger.
  • For a functional 3D printed part requiring strength, it is recommended to use about 4-6 walls.

8. Do not use supports when necessary.

Most people try to avoid the use of auxiliary supports to save time and material, but there are times when their use is necessary.

You can try tilting the prints in a certain way and moving them around the print bed, but sooner or later there will come a point when this approach doesn't work.

Many models are specially designed not to use support for successful printing, which is very convenient.

On the other hand, some designs are too complex to print without support.

3D printers cannot print in the air and large ridges definitely need support structures to extrude the material onto.

Most often you can do without supports on 45° or lower overhangs, but for anything higher it is recommended to use supports.

This is more of a visual skill that, with time and experience, allows you to understand when models need supports and when you can do without them.

Some slicers may not show support in preview, so you'll have to judge for yourself.

Solution.

  • Make sure you don't avoid supports when they are needed, because in this case you will just lose overall.
  • Use proper part orientation to ensure that your prints use as little support material as possible.

9. Never replace worn parts.

Although the profile, power supply and stepper motors of your 3D printer are designed to last for several years, other parts are consumables.

These are parts such as belts, nozzles and bearings. Make sure you replace these parts as they wear out.

You may notice a decrease in print quality over time, and wear and tear on certain parts can definitely be the cause, so check these consumables and replace them as needed.

If you are printing with materials such as ABS, PA12, PC or glow-in-the-dark plastics, the brass nozzles wear out much faster than when printing with traditional materials.

Switching to a hardened steel nozzle is a good idea if you want to print with abrasive materials.

The disadvantage is that it does not have the same level of thermal conductivity as brass nozzles.
Here is a short list of 3D printer parts that wear out over time:

  • Thermal barrier;
  • PTFE tube;
  • Fans;
  • Wires/connectors;
  • Thermistors;
  • Belts;
  • Glass platforms;
  • Bearings;
  • Heating block;
  • Motherboard.

You can buy accessories for 3D printers in the corresponding section of our catalog.

Solution.

  • Be aware that some parts will not last forever, so check these parts from time to time and replace them as needed.
  • Make sure these components are installed in a way that reduces wear.
  • Keep a set of replacement parts on hand in case they fail (nozzles, belts, wiring, PTFE tubing).
  • Purchase high quality parts designed for long life.

10. No 3D printing monitoring.

Whether you have a premium or budget 3D printer, any of them can fail. They can fail within the first few minutes when the first layer is not printing well, or a few hours after printing starts.

In our practice, there have been a few cases when checking our printers after a night shift, we found a mess on the work surface and the printer continued to extrude spaghetti plastic.

Monitoring is not a panacea for all problems, but with its help you can stop the process in time and avoid waste of plastic and electricity.

It is recommended to constantly monitor your 3D printers throughout the printing process to make sure everything is in order.

What we make sure to do is monitor the first coat and then come back 15 minutes later to make sure everything is going according to plan.

After that, checking the printers every hour or so is a good idea to control your prints.

Solution.

  • Check the 3D print from time to time to make sure everything goes smoothly.
  • Use the camera for remote fingerprint verification in conjunction with remote power control.
  • Be sure to teach others how to stop your 3D printer if necessary.

11. Neglect of safety regulations in 3D printing.

Basic precautions are based on burn and fire hazards, mechanical hazards, and injury from tools or melted plastic.

The risk of fire is very rare these days because 3D printers are usually equipped with overheating protection.

Pay attention to burns from hot nozzle or print bed.

We've also heard stories of injuries from the sharp edges of the printer's scraper.

This can be easily avoided if you are careful in your actions.

Removing supports is not the most pleasant and interesting thing to do, but getting cuts or scratches when cleaning parts is even worse.

It is recommended to check the wiring, bolts, belts and all moving parts from time to time so that a potential malfunction can be detected in the future.

Connectors can sometimes fail, so be sure to check these aspects to ensure the 3D printing process runs smoothly and safely.

Solution.

  • Be aware of your surroundings and be safe.
  • Do not put your hand too close to the nozzle.
  • Do not keep your hand on the platen when taking the print.
  • Provide good ventilation.

12. Buying a bad 3D printer out of over-enthusiasm.

We are regularly contacted by clients who, on a wave of enthusiasm, bought a cheap 3D printer on Aliexpress or other market place, and this printer does not work.

Spontaneous cheap purchases do not give you time to analyze and compare 3D printer models. In other words, you are making your choice unconsciously.

People have experienced a number of problems, such as the SD card slot not working along with serious difficulties in transferring files over Wi-Fi.

Other options included poorly insulated wires, crooked frames and platforms.

Deformed threaded screws, cheap hot ends, broken parts, poor shipping packaging, poor assembly at the factory are also common when buying cheap "NoName" printers.

You may end up spending most of your time repairing, fixing poor print quality issues, and just getting frustrated with 3D printing.

If you've been one of those unlucky ones, you've probably learned to take your time buying a 3D printer.

One of the most popular manufacturers of inexpensive 3D printers around the world is Creality, and their top product Ender-3 v2.

This 3D printer has been tested many times by users around the world, and its popularity proves to be the perfect combination of price and quality.

Every 3D company is a team that buys parts and builds a printer, but some do it much better than others and more consistently.

Some people who buy a bad printer either give up 3D printing, do a complete costly rebuild, or buy a better 3D printer much later. You might as well start by buying a good 3D printer!

Solution.


Learn more