Night fury 3d print


▷ toothless night fury dragon 3d models 【 STLFinder 】

Toothless dragon_Night Fury

cults3d

Toothless is a movie charactor from HowtoTrainYourDragon. ...NightFury lightfury

Toothless dragon_Night Fury

myminifactory

The White dragon is here! ...The link for the white dragon_Light Fury: https://www.myminifactory.com/object/3d-print-96948

Dragon- Night fury. Furia nocturna. Toothless.

pinshape

how to draw a dragon

Night Fury Toothless stencil

thingiverse

Night Fury Toothless stencil

Night Fury Symbol - How to Train your Dragon - Toothless

thingiverse

This is a symbol of the Night Fury from How to Train Your Dragon or Dragons Race to the Edge. ... It has Toothless, the Night Fury in the middle on a stand with welding rivets all around the edges

Toothless (Night fury)

cults3d

This is a 3D model of toothless ready to 3D print to bring a dragon into your life. All parts of the model have been made thick enough to print and I look forward to seeing your creations from this model! Your feedback would also be much appreciated...

Night Fury Toothless stencil 3

thingiverse

Night Fury Toothless stencil

Toothless, Night Fury, Light Fury, Chimuelo

pinshape

-Toothless, Night Fury, Light Fury, Chimuelo. How to train your Dragon, 3D  print model. Keychain Como entrenar a tu dragon. Impresión 3D. Llaveros. - Three different beautiful designs.  3 Diseños que pueden utilizar ...

Night Fury Dragon

myminifactory

Model of Toothless, the Night Fury from How To Train Your Dragon movie :-D _________________________________________________________________________ If you purchase this object through the MyMiniFactory Store please note: This product will come...

Dragon 3 night Fury

thingiverse

Nightfury Dragon 3

Toothless / Night Fury How To Train Your Dragon

thingiverse

Yup

Toothless Night Fury Bookmark

thingiverse

This is my first thing.

Toothless Dragon

thingiverse

or just welcome ;D Here is my version of Toothless from the how to train your dragon movies sculpted in blender. ... note: I recomend slicing this model in smaller pieces for easier printing You can make me extra happy by posting a make if you make...

Dragons Toothless/Night Strike dart | Ohnezahn Pfeil

thingiverse

Dragons Toothless/Night Strike dart | Ohnezahn Pfeil I printed two parts and glued them together it works perfectly and my son is happy

Dragon Krokmou - Toothless

thingiverse

Dragon Krokmou - Toothless

Dragons Toothless/Night Strike dart | Ohnezahn Pfeil

thingiverse

This is a spare / replacement dart that can be shot by the Spin Master 6019879 - DreamWorks Dragons - Toothless/Night Strike (Amazon ID: B00C81Y78K) Das ist ein Ersatzpfeil für den Spin Master 6019879 - DreamWorks Dragons - Night Strike Ohnezahn. ..

Dragons Toothless/Night Strike dart | Ohnezahn Pfeil

prusaprinters

This is a spare / replacement dart that can be shot by the Spin Master 6019879 - DreamWorks Dragons - Toothless/Night Strike (Amazon ID: B00C81Y78K) Das ist ein Ersatzpfeil für den Spin Master 6019879 - DreamWorks Dragons - Night Strike Ohnezahn...

Toothless Dragon Head

sketchfab

Toothless the Night Fury dragon in alpha form. ...(Just the head view) This is my very first model; I used SculptGl.

Toothless night fury bookmark for cutting (DXF)

thingiverse

I converted and smoothened this design to be able to waterjet cut it. ...optimized for a 0.3mm jet diameter (smallest radius is 0.155mm).

Toothless Dragon Mask Template

thingiverse

This is a feedback I made for my wife to cut out a mask from the Toothless character from the movie How to Train Your Dragon.

Toothless Dragon Flexi

thingiverse

... dragon. ...Custom made to look like toothless from the movie How to Train Your Dragon. Wings snap into the body and can be snapped out with force. ... Ensure when putting together to be careful not to push too hard on the bending parts.

Night Fury

thingiverse

This is a night fury, maybe Toothless or maybe not. he needs supports under his belly, tail and head at the least. Made on Tinkercad and edited on Meshmixer. ...DO NOT PRINT THIS MODEL ON IT'S FACE

Night Fury

thingiverse

The silhouette of a Night Fury from the movie How To Train Your Dragon.

Toothless Dragon 3D print model

cgtrader

Toothless is the only Night Fury seen thus far in the franchise, so his physical appearance is all that can be studied to learn about Night Fury anatomy. He has jet-black scales covering his whole body, his sides having small light patches in a...

How to Train Your Dragon Night Fury - How to train your dragon Chimuelo

cults3d

How to Train Your Dragon Night Fury - How to train your dragon Chimuelo Measurements: 60x50x10 . stl file

How to train your dragon - Toothless

thingiverse

How to train your dragon - Toothless

Toothless (fixed) - How to train your dragon

thingiverse

The cute and incredible Toothless from How to Train Your Dragon This remix made in Meshmixer fixes the previous problems with the eyes, tonge and terrain. ... I aded my personal touch to the rocks.

Night Fury Cookie Cutter

thingiverse

An outline for a Night Fury (Toothless) cookie cutter. This makes a cookie that is approximately 4 inches tall. Of course you will also need the picture of the actual cookie for piping the design onto the cookie. I also have a Light Fury cutter...

Toothless How to Train your Dragon

thingiverse

Just a fun sculpture of the Night Fury Dragon from the Movie How to Train your Dragon 1 and 2. ...Print Settings Printer Brand: FlashForge ...

Night Fury Badge

thingiverse

This is the design of a night fury badge

Articulated 3D Printed Night Fury Toy Flexi Dragon Fidget

Etsy is no longer supporting older versions of your web browser in order to ensure that user data remains secure. Please update to the latest version.

Take full advantage of our site features by enabling JavaScript.

  • Click to zoom

1,130 sales |

5 out of 5 stars

€14. 26

Loading

VAT included (where applicable), plus shipping

Primary color

Select a color Black Bronze Orange Green Purple Rainbow Pink Rose gold

Please select a color

Quantity

12345678910111213141516

Listed on Nov 30, 2022

140 favorites

Report this item to Etsy

Choose a reason…There’s a problem with my orderIt uses my intellectual property without permissionI don’t think it meets Etsy’s policiesChoose a reason…

The first thing you should do is contact the seller directly.

If you’ve already done that, your item hasn’t arrived, or it’s not as described, you can report that to Etsy by opening a case.

Report a problem with an order

We take intellectual property concerns very seriously, but many of these problems can be resolved directly by the parties involved. We suggest contacting the seller directly to respectfully share your concerns.

If you’d like to file an allegation of infringement, you’ll need to follow the process described in our Copyright and Intellectual Property Policy.

Review how we define handmade, vintage and supplies

See a list of prohibited items and materials

Read our mature content policy

The item for sale is…

not handmade

not vintage (20+ years)

not craft supplies

prohibited or that use prohibited materials

not properly labeled as mature content

Please choose a reason

Tell us more about how this item violates our policies. Tell us more about how this item violates our policies.

Free STL file Night Fury・3D printable model for download・Cults


Demon Slayer - Tanjiro Earrings

Free

Fox head

Free

White Lotus

Free

Full Metal Alchemist - Homonculus Ouroboros

Free

Medallion "Hiccup"

Free

Best 3D Printer Files in the Miscellaneous Category

Proteus Respirator

Free

Hyrr, the airsoft pistol shotgun

Free

Dodge WC-51 - 1/14 scale model kit

15 €

Deactivated

Topographic map of Mont Blanc

Free

4th planet Fighting pre-Olympic god

12 €

Smartphone holder for Peugeot 308

1,80 €

Deactivated

Bestsellers in Miscellaneous category

Christmas house

6. 98 €

Wolf - Flexi Articulated Animal (printed in place, without supports)

2 €

MATI

4,70 €

MMPR Dragon Dagger

4.75 €

Adderini - 3D printed repeating slingbow / crossbow pistol

12.50 €

4th planet Fighting pre-Olympic god

12 €

Polestar 2 cup holder

5.88 €

Charizard - pokemon with flexible articulation (seal in place, without supports)

3 €

Articulated Raykuaza Flexible Dragon Pokémon

1 €

T-800 Terminator Moving Skull

15 € -25% 11. 25 €

ItsLitho "Pure" Personalized Lithophane Christmas Ball

€1.90

Bunch of Christmas balls ItsLitho

€7.60 -thirty% 5.32 €

Gremlin rail 640 mm FPV

0,95 €

Christmas Park

4.65 €

CHRISTMAS TREE v2

1,50 €

ItsLitho "Creamy" personalized Lithophane Christmas ball

1,90 €



Do you want to support Cults?

Do you like Cults and want to help us continue our journey on our own ? Please note that we are a small team of 3 people , so support us in keeping the activity going and making future designs of is very easy. Here are 4 solutions available to everyone:

  • ADVERTISING: Disable the AdBlock banner blocker and click on our banner ads.

  • AFFILIATION: Shop online with our affiliate links here Amazon.

  • DONATIONS: If you want, you can donate via PayPal here.

  • * INVITE FRIENDS: * Invite your friends, discover the platform and great 3D files shared by the community!

3D printing for "dummies" or "what is a 3D printer?"

  • 1 3D printing term
  • 2 3D printing methods
    • 2.1 Extrusion printing
    • 2.2 Melting, sintering or gluing
    • 2.3 Stereolithography
    • 2.4 Lamination
  • 3 Fused Deposition Printing (FDM)
    • 3.1 Consumables
    • 3.2 Extruder
    • 3. 3 Working platform
    • 3.4 Positioners
    • 3.5 Control
    • 3.6 Varieties of
    • FDM printers
  • 4 Laser Stereolithography (SLA)
    • 4.1 Lasers and projectors
    • 4.2 Cuvette and resin
    • 4.3 Varieties of
    • Stereolithography Printers

The term 3D printing

The term 3D printing has several synonyms, one of which quite briefly and accurately characterizes the essence of the process - "additive manufacturing", that is, production by adding material. The term was not coined by chance, because this is the main difference between multiple 3D printing technologies and the usual methods of industrial production, which in turn received the name "subtractive technologies", that is, "subtractive". If during milling, grinding, cutting and other similar procedures, excess material is removed from the workpiece, then in the case of additive manufacturing, material is gradually added until a solid model is obtained.

Soon 3D printing will even be tested on the International Space Station

Strictly speaking, many traditional methods could be classified as "additive" in the broad sense of the word - for example, casting or riveting. However, it should be borne in mind that in these cases, either the consumption of materials is required for the manufacture of specific tools used in the production of specific parts (as in the case of casting), or the whole process is reduced to joining ready-made parts (welding, riveting, etc.). In order for the technology to be classified as “3D printing”, the final product must be built from raw materials, not blanks, and the formation of objects must be arbitrary - that is, without the use of forms. The latter means that additive manufacturing requires a software component. Roughly speaking, additive manufacturing requires computer control so that the shape of final products can be determined by building digital models. It was this factor that delayed the widespread adoption of 3D printing until the moment when numerical control and 3D design became widely available and highly productive.

3D printing techniques

3D printing technologies are numerous, and there are even more names for them due to patent restrictions. However, you can try to divide technologies into main areas:

Extrusion printing

This includes methods such as deposition fusion (FDM) and multi-jet printing (MJM). This method is based on the extrusion (extrusion) of consumables with the sequential formation of the finished product. As a rule, consumables consist of thermoplastics or composite materials based on them.

Melting, sintering or bonding

This approach is based on bonding powdered material together. Formation is done in different ways. The simplest is gluing, as is the case with 3D inkjet printing (3DP). Such printers deposit thin layers of powder onto the build platform, which are then selectively bonded with a binder. Powders can be made up of virtually any material that can be ground to a powder—plastic, wood, metal.

This model of James Bond's Aston Martin was successfully printed on a Voxeljet SLS printer and blown up just as successfully during the filming of Skyfall instead of the expensive original

sintering (SLS and DMLS) and smelting (SLM), which allow you to create all-metal parts. As with 3D inkjet printing, these devices apply thin layers of powder, but the material is not glued together, but sintered or melted using a laser. Laser sintering (SLS) is used to work with both plastic and metal powders, although metal pellets usually have a more fusible shell, and after printing they are additionally sintered in special ovens. DMLS is a variant of SLS installations with more powerful lasers that allow sintering metal powders directly without additives. SLM printers provide not just sintering of particles, but their complete melting, which allows you to create monolithic models that do not suffer from the relative fragility caused by the porosity of the structure. As a rule, printers for working with metal powders are equipped with vacuum working chambers, or they replace air with inert gases. Such a complication of the design is caused by the need to work with metals and alloys subject to oxidation - for example, with titanium.

Stereolithography

How an SLA printer works

Stereolithography printers use special liquid materials called "photopolymer resins". The term "photopolymerization" refers to the ability of a material to harden when exposed to light. As a rule, such materials react to ultraviolet irradiation.

Resin is poured into a special container with a movable platform, which is installed in a position near the surface of the liquid. The layer of resin covering the platform corresponds to one layer of the digital model. Then a thin layer of resin is processed by a laser beam, hardening at the points of contact. At the end of illumination, the platform together with the finished layer is immersed to the thickness of the next layer, and illumination is performed again.

Lamination

Laminating (LOM) 3D printers workflow

Some 3D printers build models using sheet materials - paper, foil, plastic film.

Layers of material are glued on top of each other and cut along the contours of the digital model using a laser or blade.

These machines are well suited for prototyping and can use very cheap consumables, including regular office paper. However, the complexity and noise of these printers, coupled with the limitations of the models they produce, limit their popularity.

Fused deposition modeling (FDM) and laser stereolithography (SLA) have become the most popular 3D printing methods used in the home and office.

Let's take a closer look at these technologies.

Fused Deposition Printing (FDM)

FDM is perhaps the simplest and most affordable 3D construction method, which is the reason for its high popularity.
High demand for FDM printers is driving device and consumable prices down rapidly, along with technology advances towards ease of use and improved reliability.

Consumables

ABS filament spool and finished model

FDM printers are designed to print with thermoplastics, which are usually supplied as thin filaments wound on spools. The range of "clean" plastics is very wide. One of the most popular materials is polylactide or "PLA plastic". This material is made from corn or sugar cane, which makes it non-toxic and environmentally friendly, but makes it relatively short-lived. ABS plastic, on the other hand, is very durable and wear-resistant, although it is susceptible to direct sunlight and can release small amounts of harmful fumes when heated. Many plastic items that we use on a daily basis are made from this material: housings for household appliances, plumbing fixtures, plastic cards, toys, etc.

In addition to PLA and ABS, printing is possible with nylon, polycarbonate, polyethylene and many other thermoplastics that are widely used in modern industry. More exotic materials are also possible, such as polyvinyl alcohol, known as "PVA plastic". This material dissolves in water, which makes it very useful for printing complex geometric patterns. But more on that below.

Model made from Laywoo-D3. Changing the extrusion temperature allows you to achieve different shades and simulate annual rings

It is not necessary to print with homogeneous plastics. It is also possible to use composite materials imitating wood, metals, stone. Such materials use all the same thermoplastics, but with impurities of non-plastic materials.

So, Laywoo-D3 consists partly of natural wood dust, which allows you to print "wooden" products, including furniture.

The material called BronzeFill is filled with real bronze, and models made from it can be ground and polished, achieving a high similarity to products made from pure bronze.

One has only to remember that thermoplastics serve as a binding element in composite materials - they determine the thresholds of strength, thermal stability and other physical and chemical properties of finished models.

Extruder

Extruder - FDM print head. Strictly speaking, this is not entirely true, because the head consists of several parts, of which only the feed mechanism is directly "extruder". However, by tradition, the term "extruder" is commonly used as a synonym for the entire print assembly.

FDM extruder general design

The extruder is designed for melting and applying thermoplastic thread. The first component is the thread feed mechanism, which consists of rollers and gears driven by an electric motor. The mechanism feeds the thread into a special heated metal tube with a small diameter nozzle, called a "hot end" or simply a "nozzle". The same mechanism is used to remove the thread if a change of material is needed.

The hot end is used to heat and melt the thread fed by the puller. As a rule, nozzles are made from brass or aluminum, although more heat-resistant, but also more expensive materials can be used. For printing with the most popular plastics, a brass nozzle is quite enough. The “nozzle” itself is attached to the end of the tube with a threaded connection and can be replaced with a new one in case of wear or if a change in diameter is necessary. The nozzle diameter determines the thickness of the molten filament and, as a result, affects the print resolution. The heating of the hot end is controlled by a thermistor. Temperature control is very important, because when the material is overheated, pyrolysis can occur, that is, the decomposition of plastic, which contributes both to the loss of the properties of the material itself and to clogging of the nozzle.

PrintBox3D One FDM Printer Extruder

To prevent the filament from melting too early, the top of the hot end is cooled by heatsinks and fans. This point is of great importance, since thermoplastics that pass the glass transition temperature significantly expand in volume and increase the friction of the material with the walls of the hot end. If the length of such a section is too long, the pulling mechanism may not have enough strength to push the thread.

The number of extruders may vary depending on the purpose of the 3D printer. The simplest options use a single print head. The dual extruder greatly expands the capabilities of the device, allowing you to print one model in two different colors, as well as using different materials. The last point is important when building complex models with overhanging structural elements: FDM printers cannot print “over the air”, since the applied layers require support. In the case of hinged elements, temporary support structures have to be printed, which are removed after printing is completed. The removal process is fraught with damage to the model itself and requires accuracy. In addition, if the model has a complex structure with internal cavities that are difficult to access, building conventional supports may not be practical due to the difficulty in removing excess material.

Finished model with PVA supports (white) before and after washing

In such cases, the same water-soluble polyvinyl alcohol (PVA) comes in handy. Using a dual extruder, you can build a model from waterproof thermoplastic using PVA to create supports.

After printing, PVA can be simply dissolved in water and a complex product of perfect quality can be obtained.

Some FDM printers can use three or even four extruders.

Work platform

Heated platform covered with removable glass work table

Models are built on a special platform, often equipped with heating elements. Preheating is required for a wide range of plastics, including the popular ABS, which are subject to a high degree of shrinkage when cooled. The rapid loss of volume by cold coats compared to freshly applied material can lead to model distortion or delamination. The heating of the platform makes it possible to significantly equalize the temperature gradient between the upper and lower layers.

Heating is not recommended for some materials. A typical example is PLA plastic, which requires a fairly long time to harden. Heating PLA can lead to deformation of the lower layers under the weight of the upper ones. When working with PLA, measures are usually taken not to heat up, but to cool the model. Such printers have characteristic open cases and additional fans blowing fresh layers of the model.

Calibration screw for work platform covered with blue masking tape

The platform needs to be calibrated before printing to ensure that the nozzle does not hit the applied layers and move too far causing air-to-air printing resulting in plastic vermicelli. The calibration process can be either manual or automatic. In manual mode, calibration is performed by positioning the nozzle at different points on the platform and adjusting the platform inclination using the support screws to achieve the optimal distance between the surface and the nozzle.

As a rule, platforms are equipped with an additional element - a removable table. This design simplifies the cleaning of the working surface and facilitates the removal of the finished model. Stages are made from various materials, including aluminum, acrylic, glass, etc. The choice of material for the manufacture of the stage depends on the presence of heating and consumables for which the printer is optimized.

For a better adhesion of the first layer of the model to the surface of the table, additional tools are often used, including polyimide film, glue and even hairspray! But the most popular tool is inexpensive, but effective masking tape. Some manufacturers make perforated tables that hold the model well but are difficult to clean. In general, the expediency of applying additional funds to the table depends on the consumable material and the material of the table itself.

Positioning mechanisms

Scheme of operation of positioning mechanisms

Of course, the print head must move relative to the working platform, and unlike conventional office printers, positioning must be carried out not in two, but in three planes, including height adjustment.

Positioning pattern may vary. The simplest and most common option involves mounting the print head on perpendicular guides driven by stepper motors and providing positioning along the X and Y axes.

Vertical positioning is carried out by moving the working platform.

On the other hand, it is possible to move the extruder in one plane and the platforms in two.

SeemeCNC ORION Delta Printer

One option that is gaining popularity is the delta coordinate system.

Such devices are called "delta robots" in the industry.

In delta printers, the print head is suspended on three manipulators, each of which moves along a vertical rail.

The synchronous symmetrical movement of the manipulators allows you to change the height of the extruder above the platform, and the asymmetric movement causes the head to move in the horizontal plane.

A variant of this system is the reverse delta design, where the extruder is fixed to the ceiling of the working chamber, and the platform moves on three support arms.

Delta printers have a cylindrical build area, and their design makes it easy to increase the height of the working area with minimal design changes by extending the rails.

In the end, everything depends on the decision of the designers, but the fundamental principle does not change.

Control

Typical Arduino-based controller with add-on modules

FDM printer operation, including nozzle and platform temperature, filament feed rate, and stepper motors for positioning the extruder, is controlled by fairly simple electronic controllers. Most controllers are based on the Arduino platform, which has an open architecture.

The programming language used by printers is called G-code (G-Code) and consists of a list of commands executed in turn by the 3D printer systems. G-code is compiled by programs called "slicers" - standard 3D printer software that combines some of the features of graphics editors with the ability to set print options through a graphical interface. The choice of slicer depends on the printer model. RepRap printers use open source slicers such as Skeinforge, Replicator G and Repetier-Host. Some companies make printers that require proprietary software.

Program code for printing is generated using slicers

As an example, we can mention Cube printers from 3D Systems. There are companies that offer proprietary software but allow third-party software, as is the case with the latest generation of MakerBot 3D printers.

Slicers are not intended for 3D design per se. This task is done with CAD editors and requires some 3D design skills. Although beginners should not despair: digital models of a wide variety of designs are offered on many sites, often even for free. Finally, some companies and individuals offer 3D design services for custom printing.

Finally, 3D printers can be used in conjunction with 3D scanners to automate the process of digitizing objects. Many of these devices are designed specifically to work with 3D printers. Notable examples include the 3D Systems Sense handheld scanner and the MakerBot Digitizer handheld desktop scanner.

MakerBot Replicator 5th Generation FDM Printer with built-in control module on the top of the frame

The user interface of a 3D printer can consist of a simple USB port for connecting to a personal computer. In such cases, the device is actually controlled by the slicer.

The disadvantage of this simplification is a rather high probability of printing failure when the computer freezes or slows down.

A more advanced option includes an internal memory or memory card interface to make the process standalone.

These models are equipped with control modules that allow you to adjust many print parameters (such as print speed or extrusion temperature). The module may include a small LCD display or even a mini-tablet.

Varieties of FDM printers

Stratasys Fortus 360mc professional FDM printer that allows printing with nylon

FDM printers are very, very diverse, ranging from the simplest homemade RepRap printers to industrial installations capable of printing large-sized objects.

Stratasys, founded by Scott Crump, the inventor of FDM technology, is a leader in the production of industrial installations.

You can build the simplest FDM printers yourself. Such devices are called RepRap, where "Rep" indicates the possibility of "replication", that is, self-reproduction.

RepRap printers can be used to print custom built plastic parts.

Controller, rails, belts, motors and other components can be easily purchased separately.

Of course, assembling such a device on your own requires serious technical and even engineering skills.

Some manufacturers make it easy by selling DIY kits, but these kits still require a good understanding of the technology.

Variant of the popular late 3rd generation Prusa RepRap printer

If you like to make things yourself, then RepRap printers will please you with the price: the average cost of the popular early generation Prusa Mendel design is about $500 in a complete set.

And, despite their "homemade nature", RepRap printers are quite capable of producing models with quality at the level of expensive branded counterparts.

Ordinary users, who do not want to delve into the intricacies of the process, but require only a convenient device for household use, can purchase a ready-made FDM printer.

Many companies are focusing on the development of the consumer market segment, offering 3D printers for sale that are ready to print “straight out of the box” and do not require serious computer skills.

3D Systems Cube consumer 3D printer

The most famous example of a consumer 3D printer is the 3D Systems Cube.

While it doesn't boast a huge build area, ultra-fast print speeds, or superb build quality, it's easy to use, affordable, and safe: This printer has received the necessary certification to be used even by children.

Mankati FDM printer demonstration: http://youtu. be/51rypJIK4y0

Laser Stereolithography (SLA)

Stereolithographic 3D printers are widely used in dental prosthetics

Stereolithographic printers are the second most popular and widespread after FDM printers.

These units deliver exceptional print quality.

The resolution of some SLA printers is measured in a matter of microns - it is not surprising that these devices quickly won the love of jewelers and dentists.

The software side of laser stereolithography is almost identical to FDM printing, so we will not repeat ourselves and will only touch on the distinctive features of the technology.

Lasers and projectors

Projector illumination of a photopolymer model using Kudo3D Titan DLP printer as an example

The cost of stereolithographic printers is rapidly declining due to growing competition due to high demand and the use of new technologies that reduce the cost of construction.

Although the technology is generically referred to as "laser" stereolithography, most recent developments use UV LED projectors for the most part.

Projectors are cheaper and more reliable than lasers, do not require the use of delicate mirrors to deflect the laser beam, and have higher performance. The latter is explained by the fact that the contour of the whole layer is illuminated as a whole, and not sequentially, point by point, as is the case with laser options. This variant of the technology is called projection stereolithography, "DLP-SLA" or simply "DLP". However, both options are currently common - both laser and projector versions.

Cuvette and resin

Photopolymer resin is poured into a cuvette

A photopolymer resin that looks like epoxy is used as consumables for stereolithography printers. Resins can have a variety of characteristics, but they all share one key feature for 3D printing applications: these materials harden when exposed to ultraviolet light. Hence, in fact, the name "photopolymer".

When polymerized, resins can have a wide variety of physical characteristics. Some resins are like rubber, others are hard plastics like ABS. You can choose different colors and degrees of transparency. The main disadvantage of resins and SLA printing in general is the cost of consumables, which significantly exceeds the cost of thermoplastics.

On the other hand, stereolithographic printers are mainly used by jewelers and dentists who do not need to build large parts but appreciate the savings from fast and accurate prototyping. Thus, SLA printers and consumables pay for themselves very quickly.

An example of a model printed on a laser stereolithographic 3D printer. In this case, the printer uses a leveling device to flatten the thin layer of resin covering the platform just prior to irradiation. As the model is being made, the platform, together with the finished layers, is “embedded” in the resin. Upon completion of printing, the model is removed from the cuvette, treated with a special solution to remove liquid resin residues and placed in an ultraviolet oven, where the final illumination of the model is performed.

Some SLA and DLP printers work in an "inverted" scheme: the model is not immersed in the consumable, but "pulled" out of it, while the laser or projector is placed under the cuvette, and not above it. This approach eliminates the need to level the surface after each exposure, but requires the use of a cuvette made of a material transparent to ultraviolet light, such as quartz glass.

The accuracy of stereolithographic printers is extremely high. For comparison, the standard for vertical resolution for FDM printers is considered to be 100 microns, and some variants of SLA printers allow you to apply layers as thin as 15 microns. But this is not the limit. The problem, rather, is not so much in the accuracy of lasers, but in the speed of the process: the higher the resolution, the lower the print speed. The use of digital projectors allows you to significantly speed up the process, because each layer is illuminated entirely. As a result, some DLP printer manufacturers claim to be able to print with a vertical resolution of one micron!

Video from CES 2013 showing Formlabs Form1 stereolithography 3D printer in action: http://youtu. be/IjaUasw64VE

Stereolithography Printer Options

Formlabs Form1 Desktop Stereolithography Printer

As with FDM printers, SLA printers come in a wide range in terms of size, features and cost. Professional installations can cost tens if not hundreds of thousands of dollars and weigh a couple of tons, but the rapid development of desktop SLA and DLP printers is gradually reducing the cost of equipment without compromising print quality.

Models such as the Titan 1 promise to make stereolithographic 3D printing affordable for small businesses and even home use at around $1,000. Formlabs' Form 1 is available now for a factory selling price of $3,299.

The developer of the DLP printer Peachy generally intends to overcome the lower price barrier of $100.

The cost of photopolymer resins remains quite high, although the average price has fallen from $150 to $50 per liter in the last couple of years.


Learn more