Metal additive 3d printer


Studio System™ | Desktop Metal

_Studio System™ applications

Studio System™ applications span a variety of industries including manufacturing, tooling, automotive, consumer, electronics, and oil & gas.


  • Extrusion Die
    h23

    This die is used in the manufacture of extruded plastic framing.

    Extrusion Die

    • Size (mm) 74 x 74 x 56

      Cost to print ($) 156.00

      Cost to machine ($) 329.67

      Cost reduction 52.68%

    • Metal 3D printing reduces lead times and costs - allowing for rapid iteration and refinement of the die design. Furthermore, lower tooling costs and lead times makes low volume custom extrusion dies economically feasible.


  • Rook Chess Piece
    316L

    One of six types of movable objects used in the game of chess.

    Rook Chess Piece

    • Size (mm) 46 x 46 x 72

      Cost to print ($) 46.00

      Cost to machine ($) 329.67

      Cost reduction 52.68%

    • Unique chess piece designs can easily be 3D printed without the long lead times and costs associated with tooling. The Studio System’s high resolution print head produces small parts with fine features and surface finish.


  • YE6 Burner Tip
    316L

    This burner tip is used to shape the flame in industrial burners.

    YE6 Burner Tip

    • Size (mm) 139 x 139 x 86

      Cost to print ($) 193.46

      Cost to machine ($) 694.00

      Cost reduction 72.00%

    • This burner tip was originally cast in the 1950s, and the tooling has since been lost for it. When a customer needed a replacement, the quote for new tooling was in the tens of thousands of dollars.

      With the Studio System, the company was able to recreate the part with properties similar to the original cast part, with no tooling cost or long lead times for the customer.


  • Putter
    17-4 PH

    Custom designed golf putter is an example of the customization that is possible with 3D printing.

    Putter

    • Size (mm) 135 x 92 x 38

      Cost to print ($) 128. 00

      Cost to machine ($) 2203.00

      Cost reduction 94.00%

    • Golf clubs, especially putters, are typically cast or machined. With the Studio System, manufacturers can achieve excellent material properties without tooling or expensive CNC machining.

      The Studio System allows for customization of parts like putters, so each player can have a design that is best suited to them. And when those designs go into mass production, they can be manufactured via binder jetting.


  • Flower Nozzle
    316L

    This flower nozzle is used to atomize fluid in industrial equipment.

    Flower Nozzle

    • Size (mm) 123 x 123 x 45

      Cost to print ($) 184.00

    • Due to its complex geometry, these parts would typically be cast followed by extensive secondary machining. With the Studio System, the nozzle can be 3D printed without the lead times and setup costs of casting, enabling one-off and small batch orders.


  • Impeller
    316L

    This impeller is used to control the pressure and flow of fluids in equipment like pumps and compressors.

    Impeller

    • Size (mm) 82 x 82 x 28

      Cost to print ($) 63.00

      Cost to machine ($) 2138.00

      Cost reduction 97.05%

    • Their complex vanes make impellers expensive and difficult to manufacture. When a custom impeller is needed metal 3D printing accelerates design optimization and product development by dramatically reducing lead time and cost.


  • Sheet Metal Embosser
    4140

    This custom embosser is used in sheet metal fabrication.

    Sheet Metal Embosser

    • Size (mm) 47 x 28 x 15

      Cost to print ($) 14.00

    • Sheet metal tools are used for a broad range of fabrication operations, including stamping, bending, countersinking and embossing.

      3D printing with the Studio System reduces tool fabrication costs, shortens production run lead time, and enables rapid iteration and refinement of the sheet metal designs and associated tooling.


  • Zipper Mold
    h23

    This part is an Injection mold insert for manufacturing zinc zippers.

    Zipper Mold

    • Size (mm) 46 x 27 x 18

      Cost to print ($) 16.00

    • 3D printing the mold inserts shortens production run lead time and allows rapid iteration and refinement of zipper designs. Using a high resolution printhead allows for smaller parts with finer features, requiring less post processing.


  • Skateboard Truck
    17-4 PH

    This part attaches wheels to a skateboard deck, and was optimized using generative design tools

    Skateboard Truck

    • Size (mm) 201 x 76 x 52

      Cost to print ($) 161. 00

      Cost to DMLS ($) 1163.00

      Cost reduction 86.00%

    • Generative design and 3D printing allows for the fabrication of innovative designs impossible with casting (the traditional production method for skateboard trucks).

      The Studio System can print that previously impossible geometry, resulting in trucks that are more aesthetically pleasing, stronger, and lighter.


  • Master Drilling Sun Gear
    17-4 PH

    This part is a sun gear used in a planetary gearbox for an earth-drilling machine.

    Master Drilling Sun Gear

    • Size (mm) 118 x 118 x 118

      Cost to print ($) 658. 00

      Cost to machine ($) 916.00

      Cost reduction 28.17%

    • After exploring a number of alternative manufacturing methods to produce the parts needed to keep crucial machinery up and running, Master Drilling chose 3D printing. The switch to 3D printing cut their lead time for replacement parts from about three months for off-shore castings, to just three weeks printing on-site, thereby reducing downtime for the earth drilling equipment.


  • Mouthpiece Mold
    h23

    Mold insert is used to injection mold medical inhaler mouthpieces.

    Mouthpiece Mold

    • Size (mm) 104 x 93 x 48

      Cost to print ($) 345.00

      Cost to machine ($) 716.77

      Cost reduction 51.87%

    • 3D printing the hard steel insert to near-net shape eliminates 95% of the required CNC machining and associated tool wear.

      Because cooling accounts for 95% of the mold cycle time, the ability to incorporate conformal cooling channels into the mold can reduce mold cycle time and increase throughput.


  • UMC End Effectors
    17-4 PH

    These grippers are used to fixture and move aerospace forgings on a manufacturing line.

    UMC End Effectors

    • Size (mm) 55 x 32 x 16

      Cost to print ($) 23.00

      Cost to machine ($) 194.00

      Cost reduction 88.14%

    • The complex geometry of end effectors requires extensive CNC machining, resulting in long lead times that occupy valuable CNC capacity. Using metal 3D printing allows for on-demand manufacturing of custom end effectors while lowering part cost and lead time.


  • APG Thread Checker Fixture
    17-4 PH

    This fixture pushes a thread checker into a part on a manufacturing line.

    APG Thread Checker Fixture

    • Size (mm) 47 x 28 x 15

      Cost to print ($) 14.00

    • This fixture pushes a thread checker into a part on a manufacturing line. As a wear item, it needs to stand up to repeated use, and must be easily produced to keep the manufacturing line up.

      The fixture must be regularly replaced as it wears out. Printing the part with the Studio System eliminates CNC lead time and frees up the machine shop for more critical work.


  • BattleBots Bot Support
    17-4 PH

    This part is a structural member for use in the bot's robotic arm.

    BattleBots Bot Support

    • Size (mm) 130 x 117 x 64

      Cost to print ($) 106. 00

      Cost to machine ($) 551.90

      Cost reduction 81.00%

    • This support is designed to carry a heavy load and withstand punishment. Engineers working on a bot used on a Discovery Channel program BattleBots had less than a month to produce a custom structural element on robotic arm. Using the Studio system, they were able to print a bracket capable of resisting bending and lateral motion while providing the stiffness, strength, weldability and fire resistance required.


  • APG Chuck Jaws
    h23

    This part is used to hold a workpiece in place during machining lathe operations.

    APG Chuck Jaws

    • Size (mm) 84 x 78 x 42

      Cost to print ($) 117.00

      Cost to machine ($) 426.36

      Cost reduction 72.56%

    • These chuck jaws closely match the geometry of the part being machined - making them complex to machine. Printing them using the Studio System eliminates CNC lead time and frees up the machine shop for more critical work.


  • O-Ring End Effector
    17-4 PH

    This end effector is used to stretch and install O-rings on a hydraulic fitting.

    O-Ring End Effector

    • Size (mm) 42 x 13 x 17

      Cost to print ($) 7.00

      Cost to machine ($) 152.17

      Cost reduction 95.40%

    • Small, detailed parts like these end effectors typically require expensive CNC machining and have long lead times. Using the Studio System’s high resolution (250μm) printhead allows manufacturers to print small parts with fine features which would be difficult to machine


  • APG Coining Fixture
    h23

    This fixture is used to achieve critical tolerances on metal injection molded (MIM) parts.

    APG Coining Fixture

    • Size (mm) 110 x 57 x 31

      Cost to print ($) 92.00

      Cost to machine ($) 392.00

      Cost reduction 75.63%

    • Fixture like this require custom geometry for each application, as well as superior wear resistance. The faster these parts are manufactured, the quicker a company can get get manufacturing lines running.

      Printing these parts with the Studio System eliminates CNC lead time and frees up the machine shop for more critical work.


  • Helical Heat Exchanger
    Copper

    Used in chemical processing to cool a hot gas as it flows through a pipe.

    Helical Heat Exchanger

    • Size (mm) 78 x 64 x 58

      Cost to print ($) 443.00

      Cost to machine ($) 2138.00

      Cost reduction 79.28%

    • This heat exchanger enables a much higher heat transfer rate than a traditionally manufactured part. Featuring thin external fins and a complex, internal helical cooling channel, this exchanger would not be manufacturable as one component via CNC machining.

      The Studio System allows for the complex geometry of the heat exchanger to easily be printed as a single component.


  • UHT Atomizer
    316L

    This part is a fuel atomizer for a steam boiler on a liquid natural gas (LNG) tanker.

    UHT Atomizer

    • Size (mm) 74 x 74 x 71

      Cost to print ($) 129. 00

      Cost to DMLS ($) 1089.00

      Cost reduction 88.00%

    • This 3D printed atomizer features complex internal channels and oblong shaped holes, which could not be manufactured with traditional methods. With the Studio System, the engineers were able to radically redesign their conventional atomizers for significantly better performance.


  • Octopus Ring
    316L

    Example of the unique jewelry that can be customized and scaled for a tailored fit.

    Octopus Ring

    • Size (mm) 38 x 38 x 30

      Cost to print ($) 14. 00

    • Unique jewelry pieces can be 3D printed without the design lock-in, long lead times and costs associated with tooling. The Studio System’s high resolution print head produces small parts with fine features and surface finish.


  • Lathe Gear
    17-4 PH

    This part is a replacement gear for vintage (circa 1940) lathe.

    Lathe Gear

    • Size (mm) 82 x 82 x 27

      Cost to print ($) 58. 00

      Cost to machine ($) 260.67

      Savings vs. machining 77.70%

    • In some cases, replacement parts are no longer available, either off the shelf or from the OEM. Fabricating custom gears via hobbing and broaching is often prohibitively expensive, but metal 3D printing allows for the fabrication of legacy parts at much lower cost.


  • Tri Manifold
    Alloy 625

    This manifold is used to combine three flows into one common flow.

    Tri Manifold

    • Size (mm) 108 x 101 x 98

      Cost to print ($) 906. 00

      Cost to DMLS ($) 4069.28

      Savings vs. machining 77.74%

    • This part converges three flow paths into one via internal channels. These channels would be impossible to machine, and instead would need to be drilled as straight holes and plugged.

      Printing on the Studio System allows these channels to be designed for their function rather than their manufacturing method. This part can be produced in just a few days with very little hands on work.


  • Generative Piston Head
    4140

    Prototype piston head for a reciprocating engine, optimized with generative design.

    Generative Piston Head

    • Size (mm) 105 x 105 x 54

      Cost to print ($) 271.00

      Cost to machine ($) 568.13

      Savings vs. machining 52.30%

    • Typically CNC machined from aluminum alloy, pistons can be time consuming and difficult to rapidly prototype and test - often taking months or even years to move from design to production.

      With the Studio System, various piston designs can be easily prototyped and tested—speeding up product development timelines, reducing time to market, and introducing new opportunities for optimization, including generative design—all while avoiding CNC backlog and lead times.


  • Pump Housing
    17-4 PH

    This is part of the housing for a hydraulic pump.

    Pump Housing

    • Size (mm) 136 x 131 x 47

      Cost to print ($) 243.00

      Cost to machine ($) 708.68

      Savings vs. machining 65.68%

    • This part would typically be cast, followed by secondary machining operations - resulting in long lead times and high costs.

      By printing on the Studio System, the long lead time associated with casting can be avoided, and the cost to machine from scratch is greatly reduced - allowing the manufacturer to produce the part in-house and enabling cost-effective rapid design iteration and pilot runs.


  • Guitar tailpiece
    17-4 PH

    The guitar tailpiece anchors one end of the guitar strings.

    Guitar tailpiece

    • Size (mm) 127 x 28 x 20

      Cost to print ($) 36.00

      Cost to machine ($) 343. 28

      Savings vs. machining 89.51%

    • The guitar tailpiece is typically cast from aluminum, and can be fairly expensive to customize for short manufacturing runs.

      Printing in steel allows design freedom and part customization while eliminating tooling costs. Steel tailpieces also exhibit more pleasing resonance and sustain characteristics for some genres and playing styles.


  • Cuff Ring
    316L

    Example of the unique jewelry that can be customized and scaled for a tailored fit.

    Cuff Ring

    • Size (mm) 59 x 54 x 80

      Cost to print ($) 43. 00

    • Unique jewelry pieces can be 3D printed without the design lock-in, long lead times and costs associated with tooling. The Studio System’s high resolution print head produces small parts with fine features and surface finish.

Production System™ | Desktop Metal


  • Seat Belt Pulley
    17-4 PH

    This output pulley is an essential component of the reclining mechanism in a car seat.

    Seat Belt Pulley

    • Size (mm) 48 x 29 x 9

      Cost per part ($) 0. 89

      Parts per build 2,740

      Annual throughput 995,900

    • This part features an undercut radial groove that, without printing, would require advanced sliders during the press-and-sinter process. Printed on the Production System eliminates the cost and complexities associated with press and sinter.


  • Surgical Tool Nozzle
    17-4 PH

    Nozzle used during surgery; customized for each patient.

    Surgical Tool Nozzle

    • Size (mm) 27 x 47 x 21

      Cost per part ($) 1. 91

      Parts per build 860

      Annual throughput 400,140

    • This surgical nozzle features a customized internal channel designed specifically for each patient. The Production System allowed this part to be mass customized and produced without any tooling, allowing it to be fine-tuned for an array of patients.

      The internal channel featured in this nozzle would require complex machining operations with multiple fixturing setups; printing on the Production System eliminates those steps, resulting in cost savings.


  • BMW Water Wheel
    17-4 PH

    The waterwheel is an integral part of the BMW’s engine cooling system.

    BMW Water Wheel

    • Size (mm) 63 x 63 x 34

      Cost per part ($) 9.74

      Parts per build 170

      Annual throughput 63,230

    • Initially made of several plastic parts, BMW redesigned this waterwheel for printing on a laser-based system, but found the process to slow and expensive for mass production.

      The Production system unlocks higher throughput, allowing the part to be manufactured at a competitive price, bringing the race track to the road.


  • Audi Fixture
    17-4 PH

    This custom manufacturing fixture was created for use on an Audi production line.

    Audi Fixture

    • Size (mm) 127 x 51 x 38

      Cost per part ($) 19.18

      Parts per build 110

      Annual throughput 41,500

    • With complex internal conformal cooling channels that span the base and the wall, this fixture would normally be manufactured in multiple pieces and welded together. As production increases, this part would be too expensive and time-consuming to scale.

      Using the Production System, the fixture is printed as a single part with cooling channels intact—reducing part cost, lead time, and manufacturing complexity.


  • Parking Shift Bracket
    17-4 PH

    This bracket is used in the parking brake assembly of a continuously variable transmission.

    Parking Shift Bracket

    • Size (mm) 93 x 44 x 12

      Cost per part ($) 2. 84

      Parts per build 680

      Annual throughput 248,980

    • This part would require a complex die and multiple secondary operations to be produced via traditional powder metallurgy techniques.

      The Production system eliminates the need for tooling, dramatically reducing lead times, reducing part costs and enables the redesign of this part to consolidate an assembly into a single part.


  • Watch Bezel
    17-4 PH

    A watch bezel is the main component that houses the dial and movement.

    Watch Bezel

    • Size (mm) 43 x 48 x 9. 5

      Cost per part ($) 1.06

      Parts per build 1,200

      Annual throughput 497,950

    • Because it prints parts with no tooling, the Production System is capable of printing multiple different watch models in each run, greatly reducing manufacturing part cost and lead time.


  • Ntopology Gear
    17-4 PH

    This gear features a complex internal lattice structure only achievable via 3D printing.

    Ntopology Gear

    • Size (mm) 63 x 63 x 12. 5

      Cost per part ($) 6.09

      Parts per build 460

      Annual throughput 165,980

    • This part features a complex lattice structure used to lightweight the part while still providing strength.

      The Production System allows for the manufacturing of complex geometries that cannot be manufactured any other way.


  • Power Steering Joint
    17-4 PH

    This joint is designed to power transfer in an electric power steering system.

    Power Steering Joint

    • Size (mm) 36 x 36 x 22

      Cost per part ($) 1. 89

      Parts per build 1,140

      Annual throughput 470,424

    • This joint is used for power transfer between an electric power steering motor and the steering shaft in an automobile. The production system allowed for this part to be produced with no tooling, allowing for accelerated lead time and flexible design.


  • Custom Bolt
    17-4 PH

    This custom-designed bolt is used in specific applications.

    Custom Bolt

    • Size (mm) 70 x 16 x 12

      Cost per part ($) 1. 10

      Parts per build 2,280

      Annual throughput 829,920

    • Due to the high cost of hard tooling, most bolts are manufactured in quantities of millions. For this bolt, however, only a few tens of thousands were needed. By printing on the Production System this bolt can be produced with no tooling at an dramatically reduced cost per part.


  • Spauger Bit
    17-4 PH

    This part is a drill bit used to quickly drill holes in clean wood.

    Spauger Bit

    • Size (mm) 166 x 12 x 12

      Cost per part ($) 1. 95

      Parts per build 800

      Annual throughput 280,470

    • Using traditional methods, this spauger bit required more than 20 manufacturing steps. With the Production System, that number is reduced to just four, with post processing only required to reach the desired hardness and surface finish. This greatly reduces the part cost and manufacturing lead time.


  • Stator
    17-4 PH

    This stator is designed for use in a small electric motor.

    Stator

    • Size (mm) 60 x 60 x 16

      Cost per part ($) 2. 82

      Parts per build 460

      Annual throughput 189,700

    • This stator is part of a small electric motor that was produced in low volume, making it difficult to justify the cost of hard tooling for metal injection molding (MIM). The entire run of parts could be produced in one run of the Production System at the desired part cost and greatly reduced manufacturing lead time.


  • Watch Case
    17-4 PH

    The case is the main component of a watch, and houses the dial and movement.

    Watch Case

    • Size (mm) 47 x 38 x 7. 7

      Cost per part ($) 1.96

      Parts per build 1,170

      Annual throughput 1,825,824

    • For each different watch model and size, different tooling is required. This makes doing smaller, more custom watch models prohibitively expensive. The Production system eliminates the need for tooling dramatically reducing part cost.

      Watch producers can now manufacture on-demand, producing watch designs that never could have been justified before.

3D metal printing - technologies and printers / Habr

3D metal printing is becoming more and more popular. And this is not surprising: each metal print material offers a unique combination of practical and aesthetic properties in order to meet the requirements of various products, whether they are prototypes, miniatures, decorations, functional parts or even kitchen utensils.

The reasons for printing with metals are so strong that 3D printing with metals is already being introduced into mass production. In fact, some 3D printed parts have already caught up, and some have even surpassed those produced by traditional methods.

Traditional production from metals and plastics is very wasteful - in the aircraft industry, for example, up to 90% of materials go to waste. The output of products, in some industries, is no more than 30% of the material used.

Metal 3D printing uses less energy and reduces waste to a minimum. In addition, the finished 3D printed part can be up to 60% lighter than a milled or cast part. The aviation industry alone will save billions of dollars in fuel costs by reducing the weight of structures. But strength and lightness are needed in other industries. Yes, and economy too.

Metal 3D printing at home


What can you do if you want to try 3D metal printing at home? Metal printing requires extremely high temperatures, it is unlikely that you can use a regular FDM 3D printer for this, at least not yet. The situation may change in a few years, but now this is not available to home 3D equipment.

If you want to make metal-looking printouts at home, the best option is to use plastic containing metal particles.

Such as Colorfabb Bronzefill or Bestfilament Bronze.

These filaments contain a significant percentage of metal powders, but also enough plastic to print at low temperatures with any 3D printer. At the same time, they contain enough metal to look, feel and have a weight close to that of a metal object.

Items made of iron-containing filament even rust under certain conditions, which adds credibility, but they cannot rust through and deteriorate from this - and this is their advantage over real metal objects.

Benefits of these materials:

  • Unique look of printouts
  • Ideal for jewelry, figurines, homewares and decor
  • High strength
  • Very little shrinkage during cooling
  • Heated table optional

Cons:

  • Low product flexibility, depends on print design
  • Not considered safe in contact with food
  • Requires fine tuning of nozzle temperature and filament feed rate
  • Product post-processing required - grinding, polishing
  • Fast extruder nozzle wear - metal filament is very abrasive compared to conventional materials

The general printing temperature range is typically 195°C - 220°C.

Industrial metal 3D printing


If you are looking to purchase a real metal 3D printer for enterprise use, then there are two pieces of news for you - good and bad.

The good news is that their range is quite wide and continues to expand - it will be possible to choose a device that meets any technical requirement. Further in the article you can see this.

The only bad news is the prices. The cost of professional metal printing printers starts anywhere from $200,000 and goes up indefinitely. In addition, even if you choose and purchase the most inexpensive of them, the purchase of consumables, scheduled maintenance with the replacement of components, and repairs will be a separate blow. We do not forget about the staff and the costs of post-processing products. And at the stage of preparation for printing, you will need special software and people who can handle it.

If you are ready for all these expenses and difficulties - read on, we will present some very interesting samples.

https://youtu.be/20R9nItDmPY

Metal 3D printing application


Some industrial sectors already use metal 3D printers, they have become an integral part of the production process, which the average consumer may not be aware of:

The most common example is medical implants and dental crowns, bridges, prostheses, which are already considered the most patients. Reason: They can be 3D printed faster and cheaper and tailored to the individual needs of each patient.

A second, equally common example: jewelry. Most major manufacturers are gradually moving away from 3D printed molds and stencils to direct metal 3D printing, and titanium printing allows jewelers to create designs that were previously impossible.

In addition, the aerospace industry is becoming more and more dependent on 3D printed metal products. Ge-AvioAero in Italy is the world's first fully 3D printed factory that produces components for LEAP jet engines.

The next industry using metal 3D printers is the automotive industry. BMW, Audi, FCA are already seriously considering applying the technology to series production, not just prototyping, where they have been using 3D printing for years.

It would seem - why reinvent the wheel? But here, too, 3D metal printing has found application. For several years now, manufacturers of bicycle components and frames have been using 3D printing. Not only in the world, but also in Russia, this has become widespread. Exclusive bike manufacturer Triton is finishing up a project with a 3D printed titanium frame element that reduces weight without compromising strength.

But before metal 3D printing really takes over the world, there are a few major challenges that need to be overcome. First of all, it is the high cost and low speed of production of large series by this method.

Metal 3D Printing Technology


Much can be said about the use of metal-printing 3D printers. There are specifics, but the main issues are the same as with any other 3D printers: software and hardware limitations, material optimization and multi-material printing. We won't talk much about software, except to mention that major publishers such as Autodesk, SolidWorks, and SolidThinking all develop software products for use in metal 3D printing so that users can bring any shape imaginable to life.

Recently, there have been examples that 3D printed metal parts can be as strong as traditionally produced metal components, and in some cases even surpass them. Created using DMLS, the products have the same mechanical properties as those of solid cast counterparts.

Let's look at the available metal 3D printing technologies:

Process #1: Layer by layer powder fusion

The process of 3D printing metals that most major companies use these days is known as powder bed fusion or sintering. This means that a laser or other high-energy beam fuses particles of evenly distributed metal powder into a single whole, creating layers of the product, one after another.

There are eight major metal 3D printer manufacturers in the world, most of them located in Germany. Their technologies go under the acronym SLM (Selective Laser Melting) or DMLS (Direct Laser Metal Sintering).

Process #2: Binder Jetting

Another professional method with layer-by-layer bonding is gluing metal particles for subsequent firing in a high-temperature furnace, where the particles are fused under pressure, making up a single metal whole. The printhead applies the coupling solution to the powder substrate in layers, like a conventional printer on sheets of paper, after which the product is sent to firing.

Another similar but different technology based on FDM printing is kneading metal powder into metal paste. Using pneumatic extrusion, the 3D printer extrudes it, much like a 3D construction printer does with cement, to form 3D objects. After the desired shape is printed, the objects are also sintered in an oven. This technology is used by the Mini Metal Maker, perhaps the only more or less affordable metal 3D printer ($1600). Add the cost of a small kiln.

Process #3: Welding

You might think that among the metal printing technologies there is no similar to the usual FDM, however, this is not entirely true. You can't melt metal filament in the hot end of your 3D printer, but the big manufacturers have the technology and use it. There are two main ways to print with solid metal material.

One of them is called DED (Directed Energy Deposition), or laser cladding. It uses a laser beam to fuse metal powder that is slowly released and deposited from an extruder, forming layers of an object with an industrial arm.

This is usually done inside a closed chamber, however, with MX3D, we see the possibility of implementing a similar technology in the construction of a real full-size bridge, which is due to be printed in 2017 in Amsterdam.

The other is called EBM (Electron Beam Manufacturing), a technology for forming layers of metal raw materials under the influence of a powerful electron beam, with its help create large and very large structures. If you do not work in the defense complex of the Russian Federation or the United States, then you are unlikely to see this technology alive.

A couple of new, barely emerging technologies, used so far only by their creators, are presented below - in the section on printers.

Metals used


Ti - Titanium

Pure titanium (Ti64 or TiAl4V) is one of the most commonly used metals for 3D printing, and certainly one of the most versatile as it is both strong and lightweight. It is used both in the medical industry (in personalized prosthetics) and in the aerospace and automotive industries (for the manufacture of parts and prototypes), and in other areas. The only catch is that it is highly reactive, which means it can explode easily when in powder form, and should definitely only be used for printing in an inert Argon gas environment.

SS - Stainless steel

Stainless steel is one of the most affordable metals for 3D printing. At the same time, it is very durable and can be used in a wide range of industrial and artistic applications. This type of steel alloy containing cobalt and nickel has high elasticity and tensile strength. 3D printing of stainless steel is used mainly only in heavy industry.

Inconel

Inconel is a modern superalloy. It is manufactured by Special Metals Corporation and is a patented trademark. Consists, for the most part, of nickel and chromium, has high heat resistance. It is used in the oil, chemical and aerospace industries (for example: to create distribution nozzles, on-board “black boxes”).

Al

Due to its inherent lightness and versatility, aluminum is a very popular metal for 3D printing applications. It is usually used in the form of various alloys, forming their basis. Aluminum powder is explosive and is used in printing in an inert Argon gas environment.

CoCr - Cobalt Chrome

This metal alloy has a very high specific strength. It is used both in dentistry - for 3D printing of dental crowns, bridges and clasp prostheses, and in other areas.

Cu - Copper

With rare exceptions, copper and its alloys - bronze, brass - are used for casting using burnt patterns, and not for direct metal printing. This is because their properties are far from ideal for industrial 3D printing applications, they are more commonly used in arts and crafts. With great success, they are added to plastic filament - for 3D printing on conventional 3D printers.

Fe - Iron

Iron and magnetic iron ore are also mainly used as an additive to PLA filament. In large-scale industry, pure iron is rarely used, and we wrote about steel above.

Au, Ag - Gold, silver and other precious metals

Most powder fusing 3D printers can work with precious metals such as gold, silver and platinum. The main task when working with them is to ensure the optimal consumption of expensive material. Precious metals are used in 3D printing of jewelry and medical products, as well as in the production of electronics.

Metal 3D printers


#1: Sciaky EBAM 300 - titanium rod

For printing really large metal structures, Sciaky's EBAM is the best choice. This device can be any size, to order. It is used primarily in the US aerospace and defense industries.

As a production model, Sciaky sells the EBAM 300. It has a working area with sides of 5791 x 1219 x 1219 mm.

The company claims the EBAM 300 is one of the fastest commercially available industrial 3D printers. Structural elements of aircraft, the production of which, according to traditional technologies, could take up to six months, are now printed within 48 hours.

Sciaky's unique technology uses a high power electron beam gun to melt 3mm thick titanium filament, with a standard deposition rate of about 3-9 kg/h.

#2: Fabrisonic UAM - ultrasonic

Another way to 3D print large metal parts is Ultrasound Additive Manufacturing Technology (UAM) from Fabrisonic. The brainchild of Fabrisonic is a three-axis CNC machine with an additional welding head. The metal layers are first cut and then welded together using ultrasound. Fabrisonic's largest 3D printer, "7200", has a build volume of 2 x 2 x 1.5 m.

# 3: Laser XLine 1000 - metal powder

One of the largest metal powder 3D printers on the market has long been the Concept Laser XLine 1000. It has a build area of ​​630 x 400 x 500mm and takes up space like a small house.

The German company that made it, which is one of the suppliers of 3D printers for aerospace giants such as Airbus, recently introduced a new printer, the XLine 2000.

2000 has two lasers and an even larger build volume of 800 x 400 x 500 mm. This machine, which uses patented LaserCUSING technology (a type of selective laser melting), can create objects from alloys of steel, aluminum, nickel, titanium, precious metals, and some pure materials (titanium and bar steels.)

All major players in the metal 3D printing market: EOS, SLM, Renishaw, Realizer and 3D Systems, as well as Shining 3D, a rapidly growing company from China.

# 4: M Line Factory - Modular 3D Factory

Displacement: 398.78 x 398.78 x 424.18 mm
1 to 4 lasers, 400 - 1000 watts each.

The M Line Factory concept is based on the principles of automation and interaction.

M Line Factory, from the same Concept Laser and operating on the same technology, does not focus on the size of the workspace, but on the convenience of production - it is a modular architecture apparatus that divides production into separate processes in such a way that these processes can occur simultaneously, not sequentially.

This new architecture consists of 2 independent machine units:

M Line Factory PRD (Production Unit)

Production Unit consists of 3 types of modules: dosing module, printing module and overflow module (tray for finished products). All of them can be individually activated and do not form one continuous piece of equipment. These modules are transported through a system of tunnels inside the machine. For example, when new powder is supplied, the empty powder storage module can be automatically replaced with a new one without interrupting the printing process. Finished parts can be moved outside the machine and immediately automatically replaced by the next jobs.

M Line Factory PCG (Processing Unit)

This is an independent data processing unit that has an integrated sieving and powder preparation station. Unpacking, preparation for the next print job and sieving take place in a closed system, without the participation of the operator.

# 5: ORLAS CREATOR - 3D printer ready to go

The creators of ORLAS CREATOR position this 3D printer as the most affordable, easy-to-use and ready-to-use, does not require the installation of any additional components and third-party programs, capable of printing directly from a complete CAD / CAM file of their own design.

All the necessary components are installed in a relatively compact case, which needs a space of 90x90x200 cm. It does not take up much space, although it looks impressive, and it weighs 350 kg.

As can be understood from the table given by the manufacturer, the metal powder is sintered by a rotating laser system, in layers 20-100 µm thick and with a “pixel” size of only 40 µm, in a nitrogen or argon atmosphere. You can connect it to a regular household power supply if your wiring can withstand a load of 10 amperes. Which, however, does not exceed the requirements of an average washing machine.

Laser power - 250 watts. The working area is a cylinder 100 mm in diameter and 110 mm in height.

#6: FormUp 350 - Powder Machine Part Method (PMPM)

The FormUp 350, powered by Powder Machine Part Method (PMPM), was created by AddUp, a joint venture between Fives and Michelin. This is the latest metal 3D printing machine, first introduced in November at Formnext2016.

The principle of operation of this 3D printer is the same as that of the above colleagues, but its main feature is different - it lies in its inclusion in PMPM.

The printer is designed specifically for industrial use, in 24/7 mode, and is designed for exactly this pace of work. The PMPM system includes quality control of all components and materials, at all stages of their production and distribution, which should guarantee consistently high performance, in which Michelin has a huge long-term experience.

# 7: XJET - NanoParticle Jetting - metal inkjet

The nanoparticle injection technology involves the use of special sealed cartridges with a solution containing a suspension of metal nanoparticles.
Nanoparticles are deposited and form the material of the printed product.

Considering the declared features of the technology (the use of nano-sized metal particles), it is easy to believe the creators of the device when they claim its unprecedented accuracy and print resolution.

# 8: VADER Mk1 - MagnetoJet - Metal Inkjet

Zack Vader's MagnetoJet technology is based on the study of magnetohydrodynamics, and more specifically, the ability to control molten metal using magnetic fields. The essence of the development is that a drop of a strictly controlled size is formed from molten aluminum, and these drops are used for printing.

The size of such a droplet is from 200 to 500 microns, printing occurs at a speed of 1000 drops per second. Printer working area: 300 mm x 300 mm x 300 mm

Media: Aluminum and its alloys (4043, 6061, 7075). And, even though it is only aluminum for now, the printer is 2 times faster than powder ones and up to 10 times cheaper.

The Mk2 is scheduled for release in 2018 and will be equipped with 10 printheads, which should increase print speed by 30 times.

# 9: METAL X - ADAM - atomic diffusion

Markforged introduced a new metal 3D printing technology - ADAM, and a 3D printer working on this technology - Metal X.

ADAM (Atomic Diffusion Additive Manufacturing) - atomic diffusion technology. Printing is done with metal powder, where the metal particles are coated with a synthetic binder, which is removed after printing, allowing the metal to fuse together.

The main advantage of the technology is the absence of the need to use ultra-high temperatures directly in the printing process, which means that there are no restrictions on the refractoriness of the materials used for printing. Theoretically, the printer can create 3D models from heavy-duty tool steels - now it is already printing with stainless steel, and titanium, Inconel and D2 and A2 steels are in development.

The technology allows you to create parts with a complex internal structure, such as in a honeycomb or in porous bone tissue, which is difficult with other 3D printing technologies, even for DMLS.

Product size: up to 250mm x 220mm x 200mm. The layer height is 50 microns.

Look, soon it will be possible to print a high-quality knife - from scratch, in a couple of hours, giving it any most intricate design.

Want more exciting news from the world of 3D technology?

Follow us on social media networks:


Metal 3D Printing - A Fundamental Guide

There is no hotter trend in 3D printing today than metal. We will talk about metal printing at home, how it is done on an industrial scale, about technologies, applications, printers, processes, prices and materials.

Metal 3D printing has grown in popularity over the past few years. And this is quite natural: each material offers a unique combination of practical and aesthetic qualities, can be suitable for a wide range of products, prototypes, miniatures, decorations, functional details and even kitchen utensils.

The reason metal 3D printing has become so popular is because the printed objects can be mass-produced. In fact, some of the printed parts are just as good (if not better) than those made with traditional methods.

In traditional production, working with plastic and metal can be quite wasteful - there is a lot of waste, a lot of excess material is used. When an aircraft manufacturer makes metal parts, up to 90% of the material is simply cut off. 3D printed metal parts require less energy and waste is reduced to a minimum. It is also important that the final 3D printed product is up to 60% lighter than a traditional part. Billions of dollars could be saved in the aviation industry alone—mainly through weight savings and fuel savings.

So, what do we need to know about metal 3D printing?

Metal 3D printing at home

If you want to make objects at home that will look like metal, your best bet is to look at metalized PLA filaments (Photo: colorFabb)

Where to start if you want to print metal objects at home ? Given the extreme heat required for true metal 3D printing, a conventional FDM 3D printer will not be able to do this.

It is unlikely that in this decade it will be possible to print with liquid metal at home. Until 2020, you probably will not have a printer specialized for this purpose at home. But in a few years, as nanotechnology advances, we may see significant developments in new applications. This can be 3D printed with conductive silver, which will emit in much the same way as it does in 2D home printers. It will even be possible to mix different materials like plastic and metal in one object.

Materials for metal 3D printing at home

Even though you can't print actual metal objects at home, you can turn to plastic filament that has metal powders added to it. ColorFabb, ProtoPasta and TreeD Filaments all offer interesting metal-PLA composite filaments. These filaments, containing a significant percentage of metal powders, remain pliable enough to be printed at low temperatures (200 to 300 Celsius) on virtually any 3D printer. At the same time, they contain enough metal to make the final object look, feel, and even weigh like metal. Iron-based filaments even rust under certain conditions.

But you can go further. Typically, up to 50 percent metal powder is added to 3D printing filament. Dutch company Formfutura says they have achieved 85 percent metal powder with 15 percent PLA. These filaments are called MetalFil Ancient Bronze and Metalfil Classic Copper. They can be printed even at "moderate" temperatures from 190 to 200 degrees Celsius.

Metal 3D Printing Filament Spools, in this case from SteelFill and CopperFill colorFabb (Steel and Bronze), Ancient Bronze (Ancient Bronze) from Formfutura

Here are the key points about metal printing at home

  • Gets a unique metal surface and look
  • Ideal for jewelry, figurines, housewares, replicas
  • Durability
  • Objects are not flexible (structure dependent)
  • Objects do not dissolve
  • Not considered food safe
  • Typical print temperature: 195 - 220°C
  • Extremely low shrinkage on cooling
  • No table heating required
  • Printing complexity is high, requires fine tuning of nozzle temperature, feed rate, post-processing

Preparing Your Home Printer for Metal 3D Printing

Since getting metal 3D prints is more difficult than usual, you may need to upgrade your 3D printer nozzle, especially if you are an entry-level printer. The metal filament wears it out quickly. There are hard-wearing hot-ends (like the E3D V6) that are themselves made of metal. They can withstand high temperatures and fit most printers. Be prepared for the fact that the nozzles will have to be changed frequently, because the metal filament is very abrasive.

You will also need to take care of the final finishing of the surface (cleaning, sanding, oiling, waxing or priming) so that the printed metal object shines as it should.

How much does metal filament for 3D printing cost?

And what about metal filament for 3D printing? - you ask. Here are a few examples:

  • ColorFabb's 750 gram Bronzefill spool is $56.36
  • ColorFabb 750g Copperfill Coil $56.36
  • Protopasta's Polishable Stainless Steel PLA Composite is $56 for 56 grams of
  • Rustable Magnetic Iron PLA Composite from Protopasta is $34.99 for 500 grams of

Industrial metal 3D printing

But what if you want a better result or even full metal 3D printing? Should a real "metal" 3D printer be purchased for business needs? We wouldn't recommend it - unless you're going to be doing it every day. A professional metal 3D printer is expensive: EOS or Stratasys devices will cost you 100-500 thousand dollars. In addition, the costs will be even greater, since you will have to hire an operator, a worker to maintain the machine, as well as to finalize the printouts (polishing, for example). Just a note: In 2016, an affordable metal 3D printer didn't exist.

Lowering Metal 3D Printing Costs

If you are not going to open a metal 3D printing business, but still need a professionally 3D printed metal part, it is better to contact the appropriate company that provides such services. 3D printing services like Shapeways, Sculpteo and iMaterialise offer direct metal printing.

They currently work with the following metal materials in 3D printing:

  • aluminum
  • steel
  • brass
  • copper
  • bronze
  • sterling silver
  • gold
  • platinum
  • titanium

If you are a jeweler, you can also order wax models for casting in precious metals.

If we talk about wax models, then in most cases they (with subsequent melting) are used when printing with metals (including gold and silver). Not all orders are carried out directly by these firms. They usually turn to other metal 3D printing companies to complete the order. However, the number of such services around the world is growing rapidly. In addition, metal 3D printing techniques are becoming more and more common in companies that offer such services.

The reason big companies love 3D printing so much is that it can be used to build fully automated lines that produce "topologically optimized" parts. This means that it is possible to fine-tune the raw materials and make the components thicker only if they must withstand heavy loads. In general, the mass of parts is significantly reduced, while their structural integrity is preserved. And this is not the only advantage of this technology. In some cases, the product turns out to be significantly cheaper and affordable for almost everyone.

Please note that metal 3D printing requires special CAD programs for modeling. It is worth paying attention to the recommendations of Shapeways - 3D printing metal guidelines. To delve further into the topic, check out Statasys’ information on related 3D printers and the nuances of metal 3D printing.

Here are some examples of Benchy test model prices for metal 3D printing:

  • Metal plastic: $22.44 (former alumide, PLA with aluminium)
  • Stainless steel: $83.75 (plated, polished)
  • Bronze: $299.91 (solid, polished)
  • Silver: $713.47 (solid, mirror polished)
  • Gold: $87.75 (gold plated, polished)
  • Gold: $12,540 (solid, 18K gold)
  • Platinum: $27,314 (solid, polished)

As you might expect, solid metal 3D printing prices are quite high.

Metal 3D printing. Applications

GE LEAP aircraft engine parts 3D printed at Avio Aero (Photo: GE)

There are several industries already using 3D printers to make everyday objects - you may not even know that these objects are printed.

  • The most common case is surgical and dental implants, which are considered the best option for patients today. Reason: they can be tailored to individual needs.
  • Another industry is jewelry. Here, most manufacturers have abandoned resin 3D printing and wax casting, switching directly to metal 3D printing.
  • In addition, the aerospace industry is becoming more and more dependent on 3D printed metal objects. The Italian company Ge-AvioAero was the first to do all-metal 3D printing. It manufactures components for LEAP aircraft engines.
  • Another industry targeting metal 3D printing is automotive. BMW, Audi, FCA are seriously considering this technology, not only for prototyping (3D printing has been used for this for quite some time), but also for making real parts.

Before metal 3D printing really takes off, however, there are some hurdles to overcome. And first of all, this is a high price, which cannot be made lower than during molding. Another problem is the low production speed.

Metal 3D printing.

Technologies

Most metal 3D printing processes start with an “atomized” powder

You can talk a lot about “metal” 3D printers, but their main problems remain the same as any other 3D – printers: software and hardware limitations, material optimization and multimateriality. We won't talk too much about the software, we'll just say that most of the major specialized software companies, such as Autodesk, SolidWorks and solidThinking, try to emphasize as much as possible the fact that as a result of the 3D metal printing process, you can get any shape you want.

In general, printed metal parts can be as strong as parts made by traditional processes. Parts made using DMLS technology have mechanical properties equivalent to casting. In addition, the porosity of objects made on a good "metal" 3D printer can reach 99.5%. In fact, manufacturer Stratasys claims that 3D printed metal parts perform above industry standards when tested for density.

3D printed metal can have different resolutions. At the highest resolution, layer thickness is 0.0008 - 0.0012" and X/Y resolution is 0.012 - 0.016". The minimum hole diameter is 0.035 - 0.045".

However, let's look at what metal 3D printing technologies are. formed layer)

The metal 3D printing process used by most relevant large companies today is called Powder Bed Fusion. This name indicates that some source of energy (a laser or other energy beam) melts an "atomized" powder (i.e., a metal powder that is carefully ground into spherical particles), resulting in layers of a printed object.

There are eight major manufacturers of metal 3D printers in the world that already use this technology; while we are talking here, there are more and more such companies. Most of them are in Germany. Their technologies are called SLM (Selective Laser Melting - selective laser fusion) or DMLS (Direct Metal Laser Sintering - direct metal laser sintering).

Metal 3D-printing process No. 2:


binder Jetting (spraying the binder)

under 3DP-technology EXONE Metal objects are printed by binding of the powder in the mountain : ExOne)

Another professional approach that also uses a powder base is called Binder Jetting. In this case, the layers are formed by gluing metal particles together and then sintering (or fusing) them in a high-temperature furnace, just like it is done with ceramics.

Another option, which is similar to working with ceramics, is mixing metal powder into metal paste. A pneumatically extruded 3D printer (similar to a syringe bioprinter or an inexpensive food printer) forms 3D objects. When the required shape is reached, the object is sent to the furnace, i. e. in the mountains

This approach is used in the Mini Metal Maker, apparently the only inexpensive "metal" 3D printer.

Metal 3D printing process #3: 9Metal Deposition This is not entirely true. Of course, on some desktop device, simply fusing metal threads onto the base will not work. However, very large steel companies can do it. And they do. There are two options for working with "metal surfacing".

One is called DED (Directed Energy Deposition) or Laser Cladding. Here, a laser beam is used to melt the metal powder, which is slowly released and solidifies as a layer, and the powder is fed using a robotic arm.

Normally the whole process takes place in a closed chamber, but the MX3D project used conventional 3D printing techniques to build a full-size bridge. Another option for metal fusion is called EBAM (Electron Beam Additive Manufacturing - additive electron beam technology), which is essentially soldering, in which a very powerful electron beam is used to melt 3 mm titanium wire, and the molten metal forms very large finished structures. As for this technology, its details are known so far only to the military.

Metal 3D printing. Metals

3D Printing Metal #1: Titanium

Pure titanium (Ti64 or TiAl4V) is one of the most commonly used metals for 3D printing and is definitely one of the most versatile, strong and lightweight. Titanium is used both in the melting process in a preformed layer and in the process of spraying a binder and is used mainly in the medical industry (for the manufacture of personal prostheses), as well as in the aerospace industry, automotive and machine tools (for the manufacture of parts and prototypes). But there is one problem. Titanium is very reactive and explodes easily in powder form. Therefore, it is necessary that titanium 3D printing takes place in a vacuum or in an argon environment.

3D printing metal #2: Stainless steel

Stainless steel is one of the cheapest 3D printing metals. At the same time, it is very durable and can be used in a wide range of manufacturing and even artistic and design applications. The type of steel alloy used also contains cobalt and nickel, is very difficult to break, and has a very high elasticity. Stainless steel is used almost exclusively in industry.

3D Printing Metal #3: Inconel

Inconel is a superalloy manufactured by Special Metals Corporation, its registered trademark. The alloy consists mainly of nickel and chromium and is very heat resistant. Therefore, it is used in the oil, chemical and aerospace (for black boxes) industries.

3D Printing Metal #4: Aluminum

Due to its lightness and versatility, aluminum is very popular in 3D printing. Aluminum alloys are commonly used.

3D Printing Metal #5: Cobalt Chrome

gap). It is most commonly used in the manufacture of turbines, dental and orthopedic implants, where 3D printing has become the dominant technology.

3D printing metal #5. Copper and bronze

With few exceptions, copper and bronze are used in wax melting processes, rarely in layer melting. The fact is that these metals are not very suitable for industry, they are more often used in the manufacture of works of art and crafts. ColorFabb offers both metals as the basis for a special metal filament.

3D printing metal #6. Iron

Iron, incl. magnetic, also mainly used as an additive to PLA-based filaments, which are produced, for example, by ProtoPasta and TreeD.

3D printing metal #7. Gold, Silver and Other Precious Metals

Most preformed layer companies can 3D print precious metals such as gold, silver and platinum. Here, along with the preservation of the aesthetic properties of materials, it is important to achieve optimization of work with expensive starting powder. Precious metal 3D printing is required for jewelry, medical applications and electronics.

Metal 3D printing. Printers

Do not even hesitate - the purchase of a metal 3D printer will not pass without a trace on your budget. It will cost at least 100-250 thousand dollars. Here is a list of a variety of "metal" printers, some of which can be found in firms providing 3D printing services.

Metal 3D Printer #1:


Sciaky EBAM 300 - Metal Filament Printing

If you need to print really large metal structures, Sciaky's EBAM technology is your best bet. By order, the device can be built in almost any size. This technique is used mainly in the aerospace industry and the military.

Sciaky's largest production printer is the EBAM 300. It prints objects in a volume of 5791 x 1219 x 1219 mm.

The company claims the EBAM 300 is also one of the fastest industrial 3D printers on the market. A three-meter-sized titanium part for an aircraft is printed on it in 48 hours, while the material consumption is about 7 kg per hour. In general, forged parts that usually take 6-12 months to complete can be made in 2 days with this 3D printer.

The metal layers are first cut and then ultrasonically welded. The largest Fabrisonic 7200 printer operates in a volume of 2 x 2 x 1.5 m. The metal powder 3D printer is the Concept Laser XLine 1000. It has a modeling volume of 630 x 400 x 500 mm and is the size of a house.

Its German company, one of the main suppliers of 3D printers for aerospace giants like Airbus, recently introduced a new machine, the Xline 2000.

This machine uses two lasers and has a working volume of 800 x 400 x 500 mm. Uses LaserCUSING laser technology (a variant of selective laser fusion) from Concept Laser, which allows you to print alloys of steel, aluminum, nickel, titanium, precious metals and even some pure substances (titanium and stainless steel).

Metallic 3D printing. Services

There are more than 100 companies worldwide offering metal 3D printing services. We list the most popular services for consumer needs.

Metal 3D Printing Service #1: Shapeways

The world's most popular 3D printing service, Shapeways offers two types of services. As a consumer, you can choose from a wide range of professionally designed objects, customize them, and then have them printed to your specifications. Like other 3D printing services, Shapeways offers a platform for designers to sell and print their work. Shapeways is also a good place for rapid prototyping: customers benefit from industrial-grade printers (EOS, 3D Systems) and personal technical support.

3D printing metals: aluminium, brass, bronze, gold, platinum, precious metal plating, silver, steel. There are also wax molds for jewelry purposes.

Metal 3D Printing Service #2: Sculpteo

Like Shapeways and i.materialise, Sculpteo is an online 3D printing service that allows anyone to upload 3D models and send them to fabrication in a wide range of materials . Like its competitors, Sculpteo provides a platform for hobbyists and professionals to showcase and sell their designs. The stable of Sculpteo printers includes highly professional machines from 3D Systems, EOS, Stratasys and ZCorp. Extensive technical documentation will help identify design flaws and select the right material for the project.

Metals for 3D printing: alumide (plastic with aluminum particles), brass, silver.

Metal 3D Printing Service #3: iMaterialise

Materialise is a company that works with industrial customers to prototyp 3D printed products. For casual users and designers, Materialize offers an online 3D printing service called i.materialise. As with Shapeways, this service allows anyone to upload their 3D designs and print them out. Once an object has been uploaded and successfully printed, a designer can list it for sale either in the gallery of the i.materalise online store or by embedding some code into their website.

3D printing metals: alumide (plastic with aluminum powder), brass, bronze, copper, gold, silver, steel, titanium.

Metal 3D Printing Service #4: 3D Hubs

Through 3D Hubs, you can search for individuals and firms that offer 3D printing services in your area, upload STL files (which are immediately evaluated for defects ) and contact service providers directly to get the job done.


Learn more