Best 3d printer consumer


The Best Cheap 3D Printers for 2022

While we'd hesitate to call 3D printing a mature technology, you might say it has reached its teenage years. Through their first decade-and-change, 3D printers have come down in price, grown easier to set up and operate, and become more reliable. And you may pay less than you expect: Many once-high-end features have migrated down to inexpensive models.

PC Labs has been reviewing 3D printers since 2013. Today, the state of 3D printing is strong, but that wasn’t always the case. For the first several years, it was often an adventure getting one of these printers up and running, let alone successfully through our testing regimen. Issues with filament-based—aka fused filament fabrication (FFF) or fused deposition modeling (FDM)—printers were abundant.

Filament feeders had to be coaxed into delivering filament from the spool to the extruder. Print beds had to be manually aligned. The extruder or hot end had to be positioned just right to minimize the gap between the nozzle and the build plate (the flat surface on which the object is printed). Objects frequently stuck to the build plate, and required careful, sometimes unsuccessful, efforts to pry them off. These and other issues required painstaking effort to resolve, often combined with calls to tech support.

Not so much anymore. While they can still be rebellious at times, 3D printers have grown up a lot, and achieving the 3D printer basics has gotten a lot less likely to end in a shouting match over small things. And they've gotten a lot more affordable, too, for curious DIY-ers and hobbyists to try.

If you're in the market for a beginner or low-cost 3D printer, it's important to know how lower-end models differ. Read on for mini-reviews of the top budget 3D printers we've tested. After that, we go into more detail on understanding the 3D printer specs and tech relevant to beginning buyers. Ready to take the plunge? Read on.

Original Prusa Mini

Best Overall Budget 3D Printer

4.5 Outstanding

Bottom Line:

It requires assembly and calibration care (plus shipping from the Czech Republic), but the Original Prusa Mini is a compact, open-frame 3D printer that consistently produces superb-quality output for a great price.

PROS

  • Top-notch object quality
  • Supports a variety of filament types
  • Useful, professionally printed user guide
  • Great support resources
  • Versatile, user-friendly software

CONS

  • First-layer calibration can be tricky
  • Only includes starter packets of filament
  • Requires monitoring if young children or pets are around

Sold By List Price Price
Prusa Research $399.00 $399.00 See It (Opens in a new window)

Read Our Original Prusa Mini Review

XYZprinting da Vinci Mini

Best Budget 3D Printer for Schools, Community Centers

4.0 Excellent

Bottom Line:

The XYZprinting da Vinci Mini is a consumer-oriented 3D printer that provides a winning combination of low price, ease of setup and use, solid print quality, and smooth, misprint-free operation.

PROS

  • Very low price.
  • Reasonably priced filament.
  • Good print quality.
  • No misprints in testing.
  • Easy setup and operation.
  • Quiet.
  • Prints over a USB or Wi-Fi connection.

CONS

  • Occasional problems in trying to launch prints.
  • Removing printed objects from the print bed is sometimes tricky.

Sold By List Price Price
Walmart $199.95 $199.95 See It (Opens in a new window)
Amazon $199.95 $199.95 See It (Opens in a new window)

Read Our XYZprinting da Vinci Mini Review

Toybox 3D Printer

Best Budget 3D Printer for Children

4.0 Excellent

Bottom Line:

The Toybox 3D Printer works well as a model designed for children, offering reliable printing from a browser or mobile device and a few thousand toys to print, plus creative options to output drawings or photos. Just bear in mind the tiny build area.

PROS

  • Reliable, misprint-free printing
  • Easy setup
  • One-touch operation
  • Well-composed help resources
  • Access to more than 2,000 printable toys and projects
  • Lets you create your own printable designs

CONS

  • Tiny build area
  • Not ideal for importing 3D files created elsewhere

Sold By List Price Price
Amazon $299.00 $299.00 See It (Opens in a new window)
Toybox Labs $379.00 $299.00 See It (Opens in a new window)

Read Our Toybox 3D Printer Review

Monoprice Mini Delta V2 3D Printer

Best Budget 3D Printer for Beginners, Non-Techies

4.0 Excellent

Bottom Line:

3D printing gurus will be intrigued by the Monoprice Mini Delta V2's use of the delta rather than Cartesian coordinate system, but beginners will just enjoy its low price, ease of use, and speedy printing.

PROS

  • Sub-$200 price
  • Quick, nearly misprint-free printing
  • Easy setup and operation
  • Sturdy steel-and-aluminum frame
  • Supports multiple filament types

CONS

  • Tiny build area
  • So-so print quality
  • Mere one-year warranty

Sold By List Price Price
Amazon $179.99 $179.99 See It (Opens in a new window)

Read Our Monoprice Mini Delta V2 3D Printer Review

Anycubic i3 Mega S

Best Budget 3D Printer With an Open Design, Big Build Area

3.5 Good

Bottom Line:

The Anycubic i3 Mega S, an inexpensive open-frame 3D printer, produced decent-quality prints in our testing. To get the most out of it, though, may require precise calibration.

PROS

  • Modestly priced
  • Large build area for an inexpensive printer
  • Supports a variety of filament types
  • Generally solid print quality
  • Uses well-known Cura software

CONS

  • Finicky print-platform alignment
  • Supported coils of filament are small
  • Poorly placed spool holder

Sold By List Price Price
Amazon $229. 98 $229.98 Check Stock (Opens in a new window)

Read Our Anycubic i3 Mega S Review

Anycubic Vyper

Best Budget 3D Printer for the Biggest Build Area Possible

3.5 Good

Bottom Line:

Anycubic's modestly priced Vyper whips up large 3D prints on its open-frame design, and provides automatic print-bed leveling. Just know that some minor assembly is required—and printed objects may require a bit of cleanup.

PROS

  • Relatively large build area
  • Automatic bed leveling
  • Simple assembly

CONS

  • Short (one-year) warranty
  • Includes only a small starter filament coil
  • Using Cura software with the Vyper requires tweaking a couple of settings
  • Test prints showed some "hairy" filament residue

Sold By List Price Price
Amazon $429. 99 $429.99 See It (Opens in a new window)
AnyCubic $369.00 $319.00 See It (Opens in a new window)

Read Our Anycubic Vyper Review

Creality Ender-3 V2

Best Budget 3D Printer for Tinkerers and DIY Types

3.5 Good

Bottom Line:

Hands-on tweaking defines Creality's budget-price Ender-3 V2, an open-frame 3D printer that you build from a kit. It produces generally above-par prints, but its print bed can be tricky to keep leveled.

PROS

  • Inexpensive
  • Slightly above-average print quality
  • Good-size build area for its price
  • Supports several filament types

CONS

  • Manual print-bed leveling can be tricky
  • Setup instructions could be deeper, more legible
  • Questionable quality control on some parts

Sold By List Price Price
Amazon $299. 00 $246.00 See It (Opens in a new window)

Read Our Creality Ender-3 V2 Review

Flashforge Finder 3D Printer

Best 3D Printer for the Very Tightest Budgets

3.5 Good

Bottom Line:

The Flashforge Finder 3D Printer is moderately priced and offers good print quality, but it proved tricky to get up and running in our tests.

PROS

  • Quiet.
  • Good print quality.
  • Connects via USB 2.0 cable, USB thumb drive, or Wi-Fi.
  • Reasonably priced.

CONS

  • Some objects pulled off the platform during testing.
  • Poor documentation.
  • Modest build volume.
  • Limited to printing with polylactic acid filament (PLA).

Sold By List Price Price
Amazon $729.00 $729.00 Check Stock (Opens in a new window)

Read Our Flashforge Finder 3D Printer Review

Polaroid PlaySmart 3D Printer

Best Budget 3D Printer for Dabbling in Small Objects

3. 5 Good

Bottom Line:

The Polaroid PlaySmart 3D Printer is a compact, stylish 3D printer with above-par overall print quality, but, alas, a tiny build area for the money.

PROS

  • Small, lightweight for a desktop 3D printer.
  • Easy to set up and use.
  • Supports PLA, PETG, and wood composite filaments.
  • Multiple-color support.
  • Wi-Fi camera monitors print jobs.
  • Prints from USB drives, SD cards, or mobile devices.

CONS

  • High price for its capabilities.
  • Small build area.
  • Too-brief warranty.

Sold By List Price Price
Amazon $699.00 $699.00 See It (Opens in a new window)

Read Our Polaroid PlaySmart 3D Printer Review

XYZprinting da Vinci Jr. 1.0 A Pro

Best Budget 3D Printer With Closed Design, Roomy Build Area

3. 5 Good

Bottom Line:

The XYZprinting da Vinci Jr. 1.0 A Pro is a moderately priced closed-frame 3D printer with a large build volume and overall good performance, but a potentially balky filament-feeding system.

PROS

  • Spacious build area
  • Works with third-party filaments
  • Self-leveling print bed

CONS

  • Build plate is not heated
  • Limited to PLA- and PETG-based filaments
  • Guide tube is prone to detaching

Sold By List Price Price
Amazon $299.95 $199.95 See It (Opens in a new window)
Best Buy $449.95 $449.95 Check Stock (Opens in a new window)

Read Our XYZprinting da Vinci Jr. 1.0 A Pro Review

Monoprice Voxel 3D Printer

Best Budget 3D Printer for Cheap Filament

3. 0 Average

Bottom Line:

The Monoprice Voxel is an under-$400 3D printer that's easy to set up and use. It exhibits generally good print quality, but it was unable to print two of our test objects.

PROS

  • Easy to set up and use.
  • Budget price for printer and filament spools.
  • Supports PLA, ABS, and several composite filament types.
  • Versatile software.
  • Prints over Ethernet or Wi-Fi, or from a USB thumb drive.

CONS

  • Frequent misprints on certain test objects.
  • Slightly balky touch screen.

Sold By List Price Price
Amazon $449.99 $369.26 See It (Opens in a new window)
Walmart $429.99 $369.26 See It (Opens in a new window)

Read Our Monoprice Voxel 3D Printer Review

Buying Guide: The Best Cheap 3D Printers for 2022


How to Buy a Cheap 3D Printer

The biggest changes to 3D printers over the last few years have come to the cheaper models. Nowadays, many of those classic, ornery 3D-printing issues have been resolved (most of the time, anyway), even for consumer and bargain-priced 3D printers. Automatic print-bed leveling is the norm, and you can usually remove 3D-printed objects from heated and/or flexible build plates with a minimum of coaxing. And most 3D printer manufacturers have either developed and refined their own software, or have adapted an open-source printing platform such as Cura(Opens in a new window).

(Credit: Zlata Ivleva)

What separates more expensive 3D printers from cheap ones ("cheap" defined as $500 or less, for the purposes of this article) is often a select group of features. These include the build volume, the type of frame, the varieties of supported filament, the software, and the connectivity mix. Let's run through those in turn.


What's the Right Build Volume for a 3D Printer?

A 3D printer’s build volume is the maximum dimensions (HWD) of a part that it can print. (We say “a part” because a 3D-printed object can consist of multiple parts that are printed, then glued or otherwise pieced together.) While the smallest build volume of any 3D printer we have tested is 3.9 by 3.9 by 4.9 inches, we consider any build volume smaller than 6 by 6 by 6 inches to be small, any between that and 10 by 10 by 10 inches as medium, and any printer with at least one build dimension of more than 10 inches as having a large build volume.

(Credit: Molly Flores)

As a general rule, inexpensive 3D printers have small build volumes, while more expensive ones have larger build volumes. This depends in part on the type of printer. Closed-frame 3D printers—and most semi-open models, which have a rigid top, base, and sides but are open in front and, often, back—tend to have small build volumes, while open-frame printers, lacking as rigid a physical structure, often have relatively large build volumes for the price. You'll want to weigh the build volume against the kinds of objects you will print.


Should I Get an Open-Frame or Closed-Frame 3D Printer?

Which brings us to the frame "form factor" question: open-frame versus closed-frame. Closed-frame 3D printers are boxlike devices, with a rigid base, walls (with a see-through door in front), and top. Among their advantages? They muffle the operating noise, as well as reduce the odor from melted filament (which is potentially an issue with ABS plastic), and they provide some protection for people or pets who might inadvertently touch the hot extruder. A downside: They tend to have smaller build volumes than open-frame 3D printers, which have fewer (often, no) walls to constrict them.

(Credit: Zlata Ivleva)

Low-cost 3D printers include both open-frame and closed-frame models, as well as a few stereolithography printers. If a relatively large build volume is a priority, you’re likely to get more bang for the buck with an open-frame model. Open-frames do have some clear downsides by definition: They tend to be noisy, emit odors when certain plastics are melted, and provide little protection for someone who might touch the hot extruder.

(Credit: Molly Flores)

Also, recognize some potential negatives of open frames, depending on the model. Some require assembly, being essentially kits, and most require more setup care than a closed-frame printer, plus more maintenance to keep them running smoothly. Still, these very traits should not deter—and may even appeal to—hobbyists and DIY folks.


What Should I Look for in 3D Printer Software and Connectivity?

Gone are the days when tinkerers had to cobble together several different programs to get a 3D printer to run. Manufacturers either include their own 3D printing program or modify an existing platform such as the open-source Cura.

3D printing software performs three main functions: processing an object file (resizing, moving, rotating, and in some cases duplicating it), slicing it (into virtual layers, based on your chosen resolution), and printing it. These are almost universally combined into a seamless process. Some high-end printers have software that supports a wider range of settings you can tweak, but even the basic suites work at least reasonably well.

More likely to vary among the cheaper set is the array of connection options from model to model. Nearly all have a USB Type-A port to fit a thumb drive for printing from document files. Most also have a USB Type-B port for connecting directly to a computer, and some offer Wi-Fi, too (or as an alternative), while a handful let you connect via Ethernet to share the printer across a local network.

Some printers support storing 3D files on an SD or microSD card (which may also contain the printer’s system files). Most 3D printer manufacturers (even the discount ones) have a mobile app to launch and monitor print jobs, and a few provide access to cloud services from which you can print.

While high-end 3D printers tend to have an abundance of connection choices, discount models vary widely in their choices. Some are generous and some are basic, so it pays to assess what a given model offers.


What Should I Look for in Filament Support?

Filament support tends to be a key area that separates the cheaper models from the higher-end ones. (See our guide to understanding 3D printing filaments for more particulars.) Inexpensive 3D printers tend to support a limited number of plastic filament types, some of them only PLA and/or ABS.

Recommended by Our Editors

3D Printing: What You Need to Know

3D Printer Filaments Explained

(Credit: Molly Flores)

PLA (polylactic acid) is a biodegradable, plant-based polymer, while ABS (acrylonitrile butadiene styrene) is the same tough plastic that Legos are made from. Objects printed from ABS are durable and nontoxic, though the material can be tricky to work with. ABS can emit an acrid, unpleasant odor during printing, and the bottom corners of objects being printed with it have a tendency to curl upward a bit, especially if you are using a non-heated print bed. This can lead to unsightly prints, and/or prints prematurely pulling off the build plate, ruining them.

Many entry-level and low-price 3D printers stick exclusively to PLA. If you want to experiment with a larger variety of filaments—which include water-soluble filament, wood- and metal-laced composites, and both tough and flexible varieties—you may have to pay more, although a few discount models support a wide range of materials.


Should I Consider a 3D Printing Pen Instead?

Although they aren’t printers per se, inexpensive 3D pens are close kin to 3D printers—using the same filament types and a similar extrusion system—and we include them in the 3D printing category. Rather than tracing out a programmed pattern, you use the 3D pen much like a normal pen, except that you draw with molten plastic. You can trace a pattern or draw freehand, and even draw in three dimensions as the plastic quickly solidifies and hardens once extruded.

(Credit: 3Doodler)

Most 3D pens cost less than $100, and some cost $50 or less. At a glance, 3D pens may appear to be toys, but some artists and craftspeople have taken to them, as it is possible to make quite complicated and beautiful objects with them. If your aim in 3D printing is something closer to freehand design and free expression than computer-centric, structured, and repeatable output, you might give one a try.


So, What Is the Best Cheap 3D Printer to Buy?

Buying a budget 3D printer needn’t mean a world of sacrifice. Plenty of capable and reliable models sell at less than $500, and while they may not be as feature-rich as their more expensive cousins, there's no sense in paying for things you don’t need.

Many casual 3D-printing experimenters will be fine with printing over a USB cable or from a thumb drive, and sticking to PLA may be the best choice for a starter 3D printer. If you focus just on the features you want, you may be pleasantly surprised at what you find. Below, check out a spec breakdown of the best under-$500 3D printers we have reviewed, paralleling our picks above. Also, for a look at the broader market, see our guide to our favorite 3D printers overall.

Prusa MK3S+ 3D Printer Review: The Heavyweight Champ Continues to Dominate

Tom's Hardware Verdict

The Prusa MK3S+ continues to hold its own in a market saturated with low-cost competitors.

Pros
  • +

    + PrusaSlicer provides best-in-class model slicing

  • +

    + Flexible build platform sets the standard

  • +

    + Automatic bed leveling

  • +

    + Stealth Mode enables a nearly silent printing experience

Why you can trust Tom's Hardware Our expert reviewers spend hours testing and comparing products and services so you can choose the best for you. Find out more about how we test.

There are few 3D printers with as many industry accolades as the Prusa i3 MK3S+, and after spending some time with this printer, it’s easy to see why it’s one of the best 3D printers currently on the market. With a price tag of $999 for an assembled machine or $750 for a DIY kit, the price point of the MK3S+ is towards the high end for an open format consumer 3D printer, but the features of this machine and the ecosystem created by Prusa (they make their own hardware, software, filament, and more) have made the MK3S+ a formidable machine for anyone interested in taking their 3D printing game to the next level.  

The features of the MK3S+ (silent stepper drivers, power-panic, etc.), noteworthy when originally launched, have largely become standard on lower-cost machines and may not seem particularly impressive on a spec sheet. However, clever software implementation and well-written documentation have created a machine that provides a best-in-class printing experience. For instance, the auto-leveling SuperPINDA probe of the MK3S+ maps the build platform for surface distortions, but the printer firmware is capable of storing multiple Z-offsets so you can switch build platforms without having to recalibrate every time.

The MK3S+ is a visually distinct machine; and the Prusa team has kept their black and orange color scheme for their smaller printer, the Prusa Mini+. The bright orange printed parts on the MK3S+ have created instant brand-recognition for the Prusa line of printers, and Prusa has doubled down on this by reinforcing their branding across their machine. In fact, you can find the word ‘Prusa’ printed, engraved, or etched into the MK3S+ in 25 places, 29 if you’re using a spool of their Prusa Polymers Prusament PLA material.  

Specifications 

Swipe to scroll horizontally

Machine Footprint16.5 x 16.5 x 15 inches (42.0cm x 42.0cm x 38.0cm)
Build Volume9.84 x 8.3 x 8.3 inches (250mm x 210mm x 210mm)
Material1.75mm PLA, ABS, ASA, PETG
Extruder TypeDirect Drive
Nozzle.4mm
Build PlatformMagnetic Heatbed with removable PEI spring steel sheets
Power Supply240 Watts
ConnectivityUSB, SD Card
Interface3.4-inch Mono LCD and click wheel
Filament Run-Out SensorYes

Included with Prusa MK3S+ 

The fully assembled Prusa MK3S+ ships with all of the accessories required to make your first print, and also includes enough spare parts to replace almost every fastener on the machine. The fully assembled MK3S+ also includes a bag of Haribo Goldbears, a signature addition from the Prusa team.

Image 1 of 2

(Image credit: Tom's Hardware)(Image credit: Tom's Hardware)

The Prusa  MK3S+ includes a full spool of silver PLA material, screwdriver, a metal part scraper, a glue stick (for adhesion), an isopropyl alcohol wipe, lubricant for the linear rails, power and USB cables, a sheet of stickers, a printed handbook, and a diagnostic printout that confirms the functionality of the mechanical and electrical systems. 

Image 1 of 2

(Image credit: Tom's Hardware)(Image credit: Tom's Hardware)

The usefulness of the handbook is hard to overstate. When you’re starting out with your first 3D printer, it can be difficult to pinpoint the cause of problems such as loss-of-extrusion, poor layer adhesion, or a clogged extruder. The included handbook is full of detailed photographs, troubleshooting workflows, and solutions to common problems. This is an invaluable resource for beginners, amateurs, and experts alike, and it’s clear to me that Prusa has set the standard for technical documentation.  

Setting up the Prusa MK3S+ 

(Image credit: Tom's Hardware)

The Prusa MK3S+ ships with a completed print attached to the build platform. This print features a serpentine line with 90 degree angles, curves, and a solid block in the center with the Prusa logo facing upwards. This print serves to confirm that the printer is functional and has been properly assembled and calibrated. I was able to easily remove the print from the build platform by bending the steel sheet and carefully removing it. 

(Image credit: Tom's Hardware)

After powering on, the printer automatically runs through an initial setup process. This process involves calibrating the Z axis by running it all the way to the top of the printer, running the mesh bed leveling process to set the Z offsets, and loading the filament. This entire process only took me a few minutes, and the high level of automation involved means that the only thing I needed to do was insert the filament into the extruder after it had heated up.  

(Image credit: Tom's Hardware)

You might be surprised to find that the Prusa MK3S+ is based on the RepRap i3 (third iteration) frame, originally released in September of 2012. Despite this nearly decade-old release date, the MK3S+ is full of modern advancements and enough innovative features to still be a top contender in the prosumer 3D printer market. 

Image 1 of 2

(Image credit: Tom's Hardware)(Image credit: Tom's Hardware)

The bright orange color makes the 3D printed parts on the MK3S+ easy to spot. The brackets mounted to the printer are printed in-house by Prusa using their own Prusament PETG filament. These brackets are robust and sturdy, and the uniform appearance between the printed parts give the printer a professional appearance. This version of the MK3S+ shipped with orange printed brackets, but the printer is also available in an all-black variant. A large selling point of the MK3S+ is the open-source nature of the machine, which means the printed parts are all available to download if you want to download, modify, or print them out yourself.  

(Image credit: Tom's Hardware)

The monochrome LCD interface and click-wheel on the MK3S+ is one of the few less-than-impressive features on this machine; it feels dated and the UI navigation can be a little clunky. This stands in contrast with printers like the Anycubic Vyper, a sub-$400 machine that features a bright and responsive color touchscreen that shows detailed print statistics during printing. This monochrome display was industry standard when the original 8-bit i3-style of printers was introduced, but it feels outdated when compared to recent printers with color touchscreens. 

(Image credit: Tom's Hardware)

The MK3S+ uses a filament spool holder that mounts directly to the frame of the printer. The T-shaped holder is able to hold two spools simultaneously, which is ideal if you plan on swapping between multiple colors to produce a multicolor 3D print. The direct-drive extruder on the MK3S+ feeds filament straight down into the hot end, so mounting the filament directly above the extruder gives the filament a straight path between the spool and the extruder.  

(Image credit: Tom's Hardware)

At the heart of the MK3S+ is the 8-bit Einsy RAMBo board, housed in a 3D printed enclosure mounted to the frame of the machine. This board is equipped with Trinamic 2130 silent stepper drivers, user-replaceable fuses, and the cable management is clean and professional.

The features made possible by this board (power-panic, live-Z adjust, silent steppers) were all major leaps when originally introduced, but many of these features have made their way down to less expensive FDM 3D printers like the Elegoo Neptune 2. The interface feels sorely in need of an update, and the addition of a color touchscreen and a 32-bit board (such as the one equipped on the Prusa Mini+) would refresh this platform. 

(Image credit: Tom's Hardware)

The attention to detail on the Prusa MK3S+ is clear, and a perfect example of this is the wire management across the machine. Current-carrying wires are attached to the extruder module with zip ties that act as a strain-relief to prevent the wires from fatiguing and separating. The wires from the power supply are tucked neatly under the frame of the machine, out of sight and reach from users to prevent accidentally unplugging them during printing.  

What Makes the Prusa MK3S+ Different?  

It can be hard to understand why the Prusa MK3S+ costs so much more than a printer like the Creality Ender 3 Pro, which seems to have similar specs on paper. To understand why this machine is so much more expensive, we need to take a closer look at the individual components of the MK3S+. 

(Image credit: Tom's Hardware)

Critical to the success of the MK3S+ is its custom-made Delta 240 Watt power supply, mounted to the frame of the machine. This unit supplies 24V power to the bed with a max current of 10 Amps, which provides fast and reliable heating for printing high temperature materials like PETG and ASA. Less expensive machines typically use lower wattage power supplies, such as the 150W power supply used by the Flashforge Adventurer 3 Lite, which take longer to heat and can have difficulty maintaining a higher temperature.  

(Image credit: Tom's Hardware)

The 24V heated bed is able to reliably hit 100C, which is more than enough to allow high temperature materials like PETG and ASA to adhere to the build platform without delaminating. The magnetic build platform is firmly held in place without any clips or latches and can easily be removed once it cools to room temperature. PETG in particular is easy to remove from the textured surface of the textured spring steel sheet, and the MK3S+ build platform is best-in-class for high-temperature adhesion.  

Image 1 of 2

(Image credit: Tom's Hardware)(Image credit: Tom's Hardware)

The MK3S+ is equipped with a genuine E3D hot end, and it has the holographic sticker to prove it (seriously). E3D manufactures every component in the hot end from the nozzle to the heatbreak which means you are very unlikely to run into the type of manufacturing defects that occasionally pop up on less expensive printers (incorrectly drilled nozzles, degraded PTFE tube liner, etc. ) In addition, this nozzle is rated for a max temperature of 300C (572F), which is easily hot enough to extrude most common thermoplastics and even some higher-temperature engineering-grade materials like Nylon and Polycarbonate.

Image 1 of 2

(Image credit: Tom's Hardware)(Image credit: Tom's Hardware)

The printed parts on the MK3S+ are a perfect example of a company applying its in-depth knowledge of a subject to its product. The printed brackets found on the MK3S+ have been printed in PETG, and the outward-facing textured surface shows the level of quality you can expect from using a textured sheet. 

In addition, I appreciate that Prusa has applied DFAM (Design for Additive Manufacturing) principles to these parts. These DFAM principles include concepts like printing hexagons instead of circles for relief holes, which print without requiring support material, and printing brackets perpendicular to their intended load to create mechanically tough parts.

(Image credit: Tom's Hardware)

The Prusa MK3S+ comes equipped with a SuperPINDA probe which is used for hands-free leveling of the build platform. The SuperPINDA (which stands for Super Prusa INDuction Autoleveling sensor) operates by detecting the proximity of the probe to the build platform and storing that information in firmware. The MK3S+ isn’t the first printer to use a probe for bed leveling, but the software implementation in PrusaSlicer means that after the printer has been set up, you can print without spending much time thinking about calibration. 

(Image credit: Tom's Hardware)

Compared to the manual bed leveling process of a printer like the Creality Ender 3 Pro, the MK3S+ is faster, easier to use, and requires less trial and error. PrusaSlicer includes a “G80” command in the start G-code (the instructions the printer reads when making a part), and this command performs a ‘Mesh Bed Leveling’ which probes the bed in a 3x3 grid to create a mesh surface that is used for calibration. This mesh surface causes the Z-axis motors to undulate over uneven areas while the print head remains perpendicular in the X/Y axis. During my testing, I didn’t need to run a single non-print calibration on the printer after the initial mesh bed leveling. 

Build Platforms on Prusa MK3S+ 

(Image credit: Tom's Hardware)

Removing a printed part from the build platform of a 3D printer can be a challenging experience if the printer isn’t calibrated correctly. The Prusa MK3S+ attempts to solve this problem by using a removable build platform that is held in place magnetically and can be flexed to remove parts after the platform has cooled. I’ve tried many different types of build surfaces, and the smooth PEI sheet used by Prusa is by far one of the easiest to print on, remove parts from, and clean.  

(Image credit: Tom's Hardware)

Prusa also offers a textured steel build platform for the MK3S+ that has a gritty surface which can give printed parts a more uniform appearance. In fact, the signature textured look of the printed parts on the MK3S+ come from this build platform. 

Parts printed on a smooth build platform will have a smooth bottom surface, which looks visually distinct from the striations on the sides of the part. By using a textured sheet, I was able to make prints that have a textured appearance on the bottom as well as the sides. This sheet is ideal for printing with PETG; the high print temperature of the material requires a textured surface to stick to, but also needs a surface that it can easily detach from.

Printing on the Prusa MK3S+  

(Image credit: Tom's Hardware)

The sample prints on the included SD card with the Prusa MK3S+ are a refreshing change from the sample parts that are typically included with low-cost 3D printers. The MK3S+ includes 16 pre-sliced parts that have been prepared for PLA with the total print time included in the file name. The sample prints vary in time from 23 minutes (a simple block with the word PRUSA on it) to almost 14 hours (a castle printed at .1mm layer height), and have all been prepared using sensible settings for the machine and highlight various features (variable layer height, multicolor printing, and fine .1mm layer resolution).  

Image 1 of 2

(Image credit: Tom's Hardware)(Image credit: Tom's Hardware)

One of my favorite sample parts is the planetary gear bearing that prints in a single print. I printed this model using the Prusament Jet Black PLA material, and after removing it from the build platform I was able to easily spin the gear freely. This part really highlights the ability of the MK3S+ to produce parts with functional strength and purpose in addition to parts designed with aesthetics in mind.  

(Image credit: Tom's Hardware)

Another stand-out sample print included with the MK3S+ is the dragon model titled Adalinda the Singing Serpent by Loubie3D. This model takes a little longer to print (about 8 hours), but the final print is another favorite of mine. Because this model was sliced by Prusa for the MK3S+ printer, the sample print comes out with a high level of detail and no unexpected settings that can cause problems (too many exterior shells, no retraction, etc. ) like the sample prints included with other FDM 3D printers. 

(Image credit: Tom's Hardware)

Printing with PrusaSlicer on the Prusa MK3S+ 

(Image credit: Prusa)

Prusa has developed its own in-house slicer for the Prusa MK3S+, called PrusaSlicer. PrusaSlicer is a fork of the confusing-to-pronounce Slic3r app, which is also a free and open-source app. Prusa has invested a considerable amount of time and effort in PrusaSlicer, and this has translated into one of the most powerful 3D printing slicer apps available for desktop 3D printers on the market. 

(Image credit: Prusa)

The current version of PrusaSlicer (2.3.3) includes profiles for printers by Prusa, Creality, Lulzbot, and more, and also includes a library of material profiles. In addition to these profiles, PrusaSlicer also includes multiple print setting profiles, which range from ultra-high detail at 0.05mm layer height to a draft mode which offers .3mm layers fast print speed at the expense of reduced quality.  

Slicing Models in PrusaSlicer for the Prusa MK3S+ 

(Image credit: Prusa)

PrusaSlicer is a feature-rich program with a simplified interface that is accessible to beginners, experts, and everyone in between. I’ve spent a lot of time in the PrusaSlicer settings, and I appreciate how much work Prusa has put into making almost every parameter of the printing process addressable without creating an overwhelming interface.

The settings are broken down into three primary categories: Print Settings, Filament Settings, and Printer Settings. Print Settings generally focuses on the speed / quality of the print, Filament Settings is used to determine temperature and extrusion parameters, and Printer Settings is used for global parameters and determining start / stop instructions.  

(Image credit: Prusa)

The primary interface offers three settings: Simple, Advanced, and Expert. Simple offers a stripped-down experience with only a few parameters able to be adjusted, while Advanced and Expert allow you to adjust the print on a more granular level.  

PrusaSlicer Quality Settings for the Prusa MK3S+ / PLA 

(Image credit: Prusa)

Swipe to scroll horizontally

MaterialPrusa Basic PLA, Silver
Layer Height0.20 mm
Infill Percentage15%, Gyroid
Print Speed45mm/second
Extruder Temperature215 degrees Celsius (419 degrees Fahrenheit)
Heated Bed Temp60 degrees Celsius (140 degrees Fahrenheit)
Print Time1 Hour, 34 Minutes

(Image credit: Tom's Hardware)

There are few prints that are better at testing out a printer than the 3DBenchy, so I used the included spool of silver Prusa PLA to print this model out using the default . 2mm Quality PrusaSlicer settings. I was impressed with the overall quality of the Benchy, and even with a highly-reflective material like a silver PLA which can highlight defects from uneven layers, the layers looked even and consistent throughout.  

Image 1 of 2

(Image credit: Tom's Hardware)(Image credit: Tom's Hardware)

The Benchy boat model is designed to highlight various features of a printer (such as the ability to print steep overhangs, small features, etc.), and a quick examination of the model shows that the MK3S+ performed very well and didn’t have any of the common defects typically seen on this model. 

PrusaSlicer Spiral Vase Settings for the Prusa MK3S+ / PLA 

(Image credit: Prusa)

Swipe to scroll horizontally

MaterialPrusament PLA, Galaxy Purple
Layer Height0.20mm
Infill Percentage0%
Print Speed60mm/second
Extruder Temperature215 degrees Celsius (419 degrees Fahrenheit)
Heated Bed Temp60 degrees Celsius (140 degrees Fahrenheit)
Print Time3 Hours, 9 Minutes

(Image credit: Tom's Hardware)

Slicing a model using the ‘Spiral Vase’ mode in PrusaSlicer will automatically create a model that is composed of a single continuously rising helical contour, which allows models to be printed a fraction of the time it would normally take to print using multiple layers. This mode is ideal for printing objects like vases or enclosures that only require a single contour as opposed to multiple contours and an infill structure. I printed the Curved Honeycomb Vase by eggnot to highlight this printing mode.

(Image credit: Tom's Hardware)

The Prusament Galaxy Purple is a favorite color of mine due to the glitter additive in the filament. This additive creates layer lines that are evenly blended and have a textured appearance. Combining this material with the Spiral Vase mode produces parts that look almost conventionally manufactured, with layer lines that are difficult to see. This model printed in just over 3 hours in Spiral Vase mode, as opposed to over 13 hours if it had been printed using conventional settings.

PrusaSlicer Speed Settings for the Prusa MK3S+ / PETG 

(Image credit: Prusa)

Swipe to scroll horizontally

MaterialPrusament PETG, Chalky Blue
Layer Height0. 2mm
Infill Percentage15%, Grid
Print Speed60mm/second
Extruder Temperature250 degrees Celsius (482 degrees Fahrenheit)
Heated Bed Temp90 degrees Celsius (194 degrees Fahrenheit)
Print Time4 Hours, 5 Minutes

Image 1 of 2

(Image credit: Tom's Hardware)(Image credit: Tom's Hardware)

PETG is a material that offers increased mechanical toughness, heat resistance, and flexibility when compared with parts printed with PLA. Prusa has taken advantage of these material properties by printing many of the components on the MK3S+ with PETG, which creates a rigid part that is able to withstand mechanical stress. PETG is also notoriously difficult to print with due to the high level of stringing that can occur when printing multiple parts simultaneously, but I didn’t have any issues when printing with the Prusament PETG material on the MK3S+.  

Image 1 of 2

(Image credit: Tom's Hardware)(Image credit: Tom's Hardware)

I used the default settings in PrusaSlicer to print the clamp model provided by Prusa that was designed specifically for PETG. This model features a functional thread, a flexible ball-and-socket joint, and can be tensioned without snapping the body of the clamp. The part printed in multiple pieces without stringing, and I was able to easily assemble it and verify functionality without damaging the clamp. If printed in a more brittle material (like PLA), I would expect the clamp to crack at a transition point on the body, but the PETG was able to hold tension without deforming or breaking.  

PrusaSlicer 3MF Import for the Prusa MK3S+ / PLA 

(Image credit: Prusa)

Swipe to scroll horizontally

MaterialPrusa Basic PLA, Silver
Layer Height0. 20mm
Infill Percentage15%, Grid
Print Speed60mm/second
Extruder Temperature215 degrees Celsius (419 degrees Fahrenheit)
Heated Bed Temp60 degrees Celsius (140 degrees Fahrenheit)
Print Time2 Hours, 17 Minutes

(Image credit: Tom's Hardware)

PrusaPrinters (the online file repository created and maintained by Prusa) offers the unique ability to share 3D printable files that have been pre-sliced and prepared for the MK3S+ with detailed print statistics available from the site. A perfect example of this is the Bag Clip by Andrei; a cam-driven bag clip that highlights the type of design freedom offered by a 3D printer. 

This model has been uploaded as a .3MF file that contains all of the information required to print, such as slicer settings, nozzle and bed temperature, and custom support structures (visibile in the screenshot above. ) 3MF is an increasingly popular alternative to the STL file, which doesn’t contain much information aside from the raw geometry of a model.

(Image credit: Tom's Hardware)

This part printed flawlessly on the first try, and the provided .3MF (or .gcode) allows a user to send this file to anyone else with the same printer and material and feel confident that the part will be indistinguishable in appearance and performance. I’ve always thought of a 3D printer as the replicator from the Michael Crichton novel Timeline, which is able to produce identical objects at various locations by converting them into digital information. However, the success of a part is frequently beholden to the settings selected by a user for fabrication, so the ability to share the fabrication plans is one step closer to being able to send a physical product as a form of digital data.  

(Image credit: Tom's Hardware)

At a price-point of $999 for an assembled printer (or $749 for a kit), the Prusa MK3S+ is a machine that doesn’t compromise on user experience and is absolutely one of the best 3D printers currently on the market. The MK3S+ has a professional and neat appearance, but the 8-bit monochrome LCD user interface might be a challenge for some users to get past, given the steep price. Interface aside, the prosumer features of the MK3S+ make it a stand-out machine for anyone who is looking for a reliable machine to produce functional parts without worrying about spending a lot of time tinkering.

If you are looking for a less expensive machine outside of the Prusa ecosystem, the Elegoo Neptune 2 (currently on Amazon for $180) offers similar printing size and features (with the notable exception of automatic bed leveling) at a fraction of the price but without the same level of robust support and documentation provided by the MK3S+ or any of the name-brand components like the E3D hotend. If you want the Prusa experience but are looking to spend a little less money, the Prusa Mini+ (available from Prusa for $399 assembled, $349 for a kit) is an excellent place to start. 

Andrew Sink first used a 3D printer in 2012, and has been enthusiastically involved in the 3D printing industry ever since. Having printed everything from a scan of his own brain to a peanut butter and jelly sandwich, he continues to dive ever more deeply into the endless applications of additive technology. He is always working on new experiments, designs, and reviews and sharing his results on Tom's Hardware, YouTube, and more.

8 Best Enclosed 3D Printers of 2022 (All Price Ranges)

Enclosed 3D Printers prevent cold air from entering the print, causing warping or other problems. For basic materials like PLA, 3D printer cases don't matter much, but for more complex materials like ABS and Nylon, they will save you time and time again.

Most cheap 3D printers are open 3D printers - they don't have a frame or casing (sometimes you can buy them separately) and print outdoors. Almost all 3D printer kits like the Ender 3 and CR-10 are open source 3D printers.

However, this can cause problems. ABS, a widely used material for 3D printers, warps if it is not cooled slowly. In addition, closed 3D printers allow you to keep hot and dangerous parts of the 3D printer away from your hands and others. This is especially important for kids, which is why indoor 3D printers are some of the best 3D printers for kids.

Contents

  1. Best Closed 3D Printers Under $1,000
  2. Flashforge Adventurer 3 Lite - cheapest indoor 3D printer
  3. Monoprice Voxel - budget indoor 3D printer
  4. QIDI Tech X-Pro - great 3D printer with 0 case
  5. Flashforge Creator Pro 2 - best inexpensive IDEX printer
  6. BIBO 2
  7. Best Enclosed 3D Printers for Consumers
  8. Dremel 3D45
  9. Raise3D E2
  10. Best High End 3D Printers with Housings
  11. Raise3D Pro2
  12. Ultimaker S5 (with housing kit)
  13. Buyer's Guide - What to look for
  14. Benefits of Enclosed 3D Printers
  15. Frequently Asked Questions

Best Enclosed 3D Printers Under $1,000

Flashforge Adventurer 3 - Cheapest indoor 3D printer

  • Price: about $339
  • Assembly volume: 150 x 150 x 150 mm

Flashforge Adventurer 3 Lite is a compact and quiet, fully enclosed beginner printer that provides friction-free printing. Printer setup is minimal other than a well-managed five-point calibration process, making it the best choice for beginners or students looking to start printing without the hassle.

It is almost identical to the Adventurer 3, except for the built-in camera and thread runout sensor. These minor features do not detract from the simple typing experience.

In addition to a sleek, closed design, the Flashforge Adventurer 3 Lite has everything you need to handle tough materials like ABS: a flexible heated bed with a maximum temperature of 100°C and a maximum nozzle temperature of 240°C. With these features, you can also work with more exotic heat-sensitive materials such as metal, wood, and more.

It also has a wide range of connectivity options, including Wi-Fi and remote print monitoring thanks to FlashForge's 3D Cloud Print technology. The build volume of 150 x 150 x 150mm results in a narrow printable area, which is one of the few gripes I had when evaluating the Flashforge Adventurer 3 Lite. You won't have much luck printing bulky and tall parts, but this is easy to fix by printing in batches.

It is also worth noting that the filament compartment located on the side of the printer, although practical, is not intended for all types and brands of filament. You may need an external holder if your chosen third party filament is not suitable.

Key points:

  • Closed chamber
  • Rugged, beginner-friendly printer
  • Wi-Fi connectivity
  • Materials: PLA, ABS, Heavy Duty PLA, PLA Color Change, Metal Filled, Wood and High Speed ​​PLA

Monoprice Voxel - Budget Enclosed 3D Printer

  • Price: $449
  • Assembly volume: 150 x 150 x 150 mm

The cheapest indoor 3D printer we recommend, the Monoprice Voxel is one of the best 3D printers for beginners. It's very easy to set up (within 10 minutes!), easy to operate with a touch screen, can print over WiFi, and comes with 8GB of onboard storage for 3D printer files. It comes with several 3D models in files, as well as some materials to get you started, so you can go from unboxing to printing in minutes.

If you're new to 3D printing and aren't too tech-savvy, the assisted leveling system reduces the experience to a simple click. It also comes fully assembled, so you won't need any DIY skills, which is surprising considering most printers in this price range are 3D printing kits. It can also connect to Polar Cloud, allowing you to manage and control your printer remotely, and even do so for multiple printers at the same time.

Key Points:

  • Cheap Indoor 3D Printer
  • Beginner Friendly
  • WiFi Printing and Touch Screen on an Inexpensive Device
  • Materials: ABS, PLA, PETG, Flexibles

QIDI Tech X-Pro is a great 3D printer with a $500 case

  • Price: $500
  • Assembly volume: 230 x 150 x 150 mm

One of last year's most popular low-cost 3D printers, the Qidi Tech X-Pro offers reliability, precision, dual extrusion and an efficient closed area print, all for $500.

The layer thickness starts from 0.05 mm, the printer can print at speeds from 30 to 150 mm/s - although at such high speeds the print quality deteriorates noticeably. The printer is Mac and Windows compatible and can print over WiFi, USB or Ethernet.

Flexible, removable plate allows for easy removal of prints with minimal damage, and comes with Qidi Tech's own QidiPrint 3D Slicer. Overall, this is one of the best indoor 3D printers under $500.

Highlights:

  • Large 4.5" touchscreen for ergonomic printing
  • Flexible assembly plate
  • WiFi printing and dual extrusion for $500
  • Materials: ABS, PLA and PETG

Flashforge Creator Pro 2 - Best value IDEX printer

  • Build volume: 200 x 148 x 150mm

A well-equipped update to the classic Creator Pro, the Flashforge Creator Pro 2 offers all the benefits of a case with features you don't expect to see in the $600-$700 range. We see it as an ideal second printer for manufacturers who have already completed their initial training on a budget FDM kit and are now looking for something more versatile and feature rich.

While the Flashforge Creator Pro 2 has a solid, well-made enclosed print chamber suitable for both ABS and PLA thanks to its removable acrylic top cover, it's the independent dual extruder system that sets it apart from other best enclosed 3D printers.

The IDEX system is almost unheard of at this price point, giving manufacturers the flexibility to work with specular prints, duplicate prints, dissolvable support structures, and even print multiple materials or colors at the same time. It is suitable for complex prints with vertical overhangs or is the perfect tool to help the teacher to release as many student-designed prints as quickly as possible.

These two centerpieces aside, Flashforge Creator Pro 2 completes the offering with a touch interface, 200 x 148 x 150mm volume and compatibility with PLA, Pearl PLA, ABS, ABS Pro, PVA and HIPS materials.

It's worth noting that Flashforge made the wrong choice by tying the Creator Pro 2 to its own FlashPrint slicer. It does its job well enough, but doesn't have the versatility of an open source software suite like Cura. This isn't necessarily the deciding factor, especially for those new to 3D printing or educators who want simple software and pre-loaded settings specifically tuned to work with the Creator Pro 2 right from the start.

Highlights:

  • Inexpensive independent system with two extruders
  • Fully enclosed print chamber
  • Materials: PLA, Pearl PLA, ABS, ABS Pro, PVA and HIPS

BIBO 2

  • Price: $679
  • Assembly volume: 216 x 187 x 160 mm

The Bibo 2 printer, with character and affordable for hobbyists, offers 50 micron accuracy, dual extrusion and WiFi printing, all for less than $1,000.

Although this closed 3D printer is not an IDEX printer, it still offers copy printing modes for printing two identical objects at the same time. It features an easy-to-use touch screen - which isn't a given in this price range - and has a low-filament detection feature to avoid spoiling prints.

In addition to the ABS and Nylon efficient 3D printing 3D printer body, Bibo is built in a stable and durable aluminum frame, minimizing unwanted vibrations that can slightly affect print performance and quality. Overall, this is a great indoor 3D printer for the price, and it can also come with a laser engraver kit.

Highlights:

  • WiFi printing, dual extrusion and touchscreen, all for just over $500.
  • Minimum layer height 50 microns
  • Claims it can print polycarbonate but also says max temperature is 270C
  • Materials: PLA, ABS, HIPS, flexible filaments, PETG, nylon, PC, carbon fiber
  • Best Indoor 3D Printers for Consumers

Best Indoor 3D Printers for Consumers

Dremel 3D45

  • Price: $1,599
  • Assembly volume: 254 x 152 x 170 mm

Accurate, versatile and ideal for teaching 3D printing in schools, the Dremel 3D45 builds on nearly a century of Dremel manufacturing experience. Accuracy down to 50 microns, WiFi, USB or Ethernet cable connectivity, Mac and Windows compatibility, and iPad compatibility make the Dremel Digilab 3D45 the perfect addition to any school or business prototyping environment.

The heated plate allows you to print on nylon and Eco-ABS, while the built-in HD camera provides convenient remote control of the print progress, which is easily done using cloud-based 3D printing software.

If you have any problems, the Dremel Customer Service in the USA is here to help you. Overall, this is a solid and accurate indoor 3D printer that offers good volume and results for the price.

Highlights:

  • Powerful automatic leveling system
  • Highly rated customer support
  • Universal
  • Materials: PLA, PETG, Eco-ABS, Nylon
  • Price: $3,499
  • Assembly volume: 330 x 240 x 240 mm

Raise3D Large Enclosed 3D Printer adds to IDEX's already impressive range of dual extruder 3D printers. The extruders of IDEX 3D printers can move independently of each other, which greatly increases the speed and efficiency of printing, especially when printing multiple identical or identical parts.

Raise3D E2

The E2 printer has two basic modes:

Mirror mode: 3D printing simultaneously prints inverted mirror versions of your model, such as the sole of a shoe for the left and right foot.
Duplicating mode: uses both extruders synchronously, printing two identical objects at the same time and doubling the printing efficiency.

The E2 3D printer case keeps heat inside and everything else outside. If the door is opened during printing, the process is immediately suspended so that no one is burned or injured by the extruder or the heated layer. The E2 is also equipped with an efficient air filtration system that removes melted plastic particles and odors, as well as filament end sensors and power-off recovery functions.

Highlights:

  • Build volume is reduced to 295 x 240 x 240mm when using the
  • dual extruder
  • Useful "Mirror" and "Duplicate" modes
  • Built-in security measures
  • Materials: PLA, ABS, HIPS, PC, TPU and TPE, PETG, nylon, PP, ASA, PVA, glass-filled filaments, metal-filled, carbon-fiber and wood-filled.
  • Price: $3,999 / $5,999
    Build Volume: 305 x 305 x 300 (605) mm

Top of the line 3D printers in the upper price range with housings

Raise3D Pro2

A true workhorse full body 3D printer, the Raise3D Pro2 series offers incredible precision, material compatibility, great workflow and many other key features.

The standard Pro2 already has a very large build area, while the Pro2 Plus extends the z-axis range to parts up to 605mm high. The extruders can reach temperatures of 300C for even the toughest materials such as PC, and the dual extruders enable efficient printing with support for soluble materials as well as multi-color 3D printing.

With a minimum layer height of 0.01mm, Pro2 3D printers can print incredibly sharp and finely detailed details. Swap out the nozzle for a smaller nozzle and focus on the small details to get a fantastic finish. The built-in camera makes it easy to control prints, while the 7-inch touch screen provides data and an easy-to-use overall workflow.

Highlights:

  • Dual extruder build volume: 280 x 305 x 300 mm
  • A complete printer: accurate, reliable, closed, versatile.
  • Materials: PLA, ABS, HIPS, PC, TPU, nylon, ASA, PETG, PVA, glass, carbon fiber, wood.

Ultimaker S5 (with housing kit)

  • Price: $5,995
  • Assembly volume: 330 x 240 x 300 mm

The Ultimaker S5 is capable of printing industrial grade parts with layer resolution down to 20 microns. An enclosed 3D printer that becomes even more efficient and safer with the S5 Pro kit, the S5 delivers reliable and repeatable dual extrusion with amazing precision, even with abrasive filaments such as glass and carbon fiber.

Although Ultimaker manufactures its own filaments, the S5 is open and can be used with any 2.85mm filament. It prints over WiFi as well as other methods and can be monitored remotely using the built-in camera.

When you purchase the S5 Pro Bundle, you get access to 24/7 automated material handling, air filtration and heat control for 6 filaments, as well as an Air Manager that further encloses the 3D printer.

Highlights:

  • Excellent accuracy and print quality
  • Reliable and efficient in many materials
  • Pro Bundle makes it even more efficient indoor 3D printer
  • Materials: PLA, CPE, NYLON, ABS, glass, carbon fiber, PC, PVA, PP, TPU

Ultimaker s5 with optional pro kit including housing, air filter and filament storage

Buyer's Guide - what to look for

Fully or partially enclosed chamber

Partially enclosed chamber printers are a bit of an oddity because they don't provide ideal printing conditions with either of the two main filament types, ABS and PLA. However, they provide an extra layer of security, which is useful for educational institutions or those with children. We recommend a fully enclosed chamber if you plan to print with ABS, and an open chamber if you choose PLA as your media. If you are going to print with ABS and PLA, choose an enclosed printer with removable covers.

Stock Volume

Build Volume is the printable area available to you on a closed printer. In other words, it is a measure of the size and type of prints you can make. If you are planning on making large prints or multiple copies, we recommend high volume printers such as the Ultimaker S5.

Material Compatibility

By design, the enclosed 3D printer is designed to be compatible with a wider range of media types due to the ability to maintain higher temperatures around prints and keep cold air out. ABS is the most common type of material for sealed chambers, but you will also find printers that can work with nylon, PC, and other heat-sensitive materials. PLA can also be used if the printer covers are removable as this material requires cooler ambient temperatures for best results.

Heated bed

Given that the purpose of the closed chamber is to provide a stable thermal environment for printing with more complex materials such as ABS, a heated bed is a must. It helps provide an additional source of heat directly below the print, which promotes layer adhesion and slows down the cooling rate, thus avoiding unwanted defects such as warping and curling.

Connectivity

Connectivity determines how you interact with the printer, whether it's sending cut prints or fine-tuning settings. An SD card reader is more or less standard, as is USB in many cases, but for ease of use, there's nothing better than a Wi-Fi connection and thus cloud printing and monitoring.

Layer Resolution

Layer Resolution indicates the smallest layer height that can be printed. Choose a printer with a lower layer resolution for parts with more detail, such as 20 microns on the Ultimaker S5. On a closed FDM printer, 100 micron layer resolution is relatively standard and allows for a wide range of detail.

Filters

If you're buying a sealed chamber, your plan is most likely to include ABS printing. ABS not only has an unpleasant odor, but also emits potentially harmful fumes. A printer equipped with filters, carbon or HEPA, helps to extract the most toxic elements from the fumes. In addition, we also recommend working with ABS in a well-ventilated area.

Touch Screen

For convenience, we recommend an enclosed touch screen 3D printer. After all, we're all used to scrolling and swiping on our phones, so it makes sense to want the same functionality and familiar interface when working with a 3D printer. Most modern printers come with a touch screen as standard.

Price

Closed printers tend to increase in price as you pay for additional production and design. But thanks to the ever-increasing popularity of the budget category, enclosed camera printers are more affordable than ever before. You can easily buy a reliable indoor 3D printer for less than $400. Naturally, if you have the budget, new professional-grade printers that cost thousands of dollars also hit store shelves every year.

Benefits of Enclosed 3D Printers

Better ABS and Nylon 3D Printing

Housings can cool parts more slowly and maintain a more stable and higher temperature in the working chamber. This reduces buckling and splitting during the printing process.

Much safer

3D printer housings keep hot parts such as the nozzle and heated bed away from children if you have a family at home or if 3D printing is done in schools.

Quieter

The closed area keeps noise out, making them ideal quiet 3D printers. The enclosures keep out the buzz and hum of the printing process, which is a real boon if you're typing at home or in confined spaces with poor acoustics that can amplify noise levels.

Stronger and more durable

Enclosed 3D printers typically feature a sturdy four-walled cubic design that keeps vibrations and other factors from degrading print quality.

Noise Reduction

Enclosures help reduce noise by reducing hum and hum during printing, which is a real boon if you're printing at home or in confined spaces with poor acoustics that can amplify noise levels.

Drawbacks of Enclosed 3D Printers

More Expensive - 3D printers with enclosures are more expensive than open FDM printers. The logic here is obvious: manufacturers are forced to spend more money on raw materials and the assembly process, which invariably reflects on consumers.

Difficulty in maintenance and troubleshooting - Due to the enclosed design, maintenance of an enclosed 3D printer is much more difficult. Cleaning, replacing, troubleshooting or upgrading parts is much more of a hassle than an open design 3D printer.

FAQ

What is the 3D printer case for?

Enclosures help improve print performance by keeping hot air in and cold air/draughts out. For heat sensitive materials such as ABS, a stable higher temperature environment is critical for proper layer adhesion and reduced chance of warping, curling and other problems. Likewise, the shroud helps prevent dust and dirt from getting on printer parts and the print itself; this is essential for successful printing as contamination can affect adhesion and print quality.

Are closed 3D printers safer? Why?

Yes. The housing shields hot and moving parts from prying fingers and hands, reducing the chance of injury compared to open design printers where all parts are exposed and easily accessible. Whether you live with children or work in an educational setting with younger students, an enclosed 3D printer will give you peace of mind. In addition, filters, often installed in enclosed printers, remove toxic elements from the fumes.

How to maintain a closed 3D printer?

Maintaining a closed 3D printer is identical to maintaining an open design printer: regular cleaning of the bed and nozzle, updating the firmware, regularly inspecting parts for wear, leveling/calibrating the bed at regular intervals.

Are closed 3D printers better?

If you want to print on ABS, yes. The housing provides the correct, stable ambient temperature for ABS to thrive. On the other hand, if you are planning to print to PLA, an open design printer would be the best option. PLA needs plenty of cold air and ventilation to thrive.

The best foreign, cheapest and most reliable personal 3D printers. Buyer's Guide

The models are ranked in a special order based on several criteria, but most likely none of the 3D printers on the list will disappoint the buyer in the long run. When compiling the rating, the 3D Hubs rating system was used in conjunction with reviews on Amazon and other resources, and the opinions of amateurs and specialists were also taken into account. Of course, in its current form, the list is valid only today and may change with the advent of new devices.

LulzBot TAZ 5

Aleph Objects, branded as LulzBot, is one of the most active companies in the 3D printing industry. Their business is growing at an astonishing rate thanks to the fundamental element - product quality. The company's customer support is top notch, the printers are built with completely open resources, and the device features are some of the most useful on the market. All models released by LulzBot are consistently very well received by 3D printing enthusiasts, so there is no doubt that the TAZ 5 is one of the best purchases one can make. The device has a rather impressive print volume of 298x275x250mm and supports the widest range of materials, making it an excellent choice. Given the characteristics of the model, it's hard to argue with the company's motto, "Industrial-grade 3D printers on your desktop." LulzBot TAZ 5 is not the cheapest model, its price is $2200. However, if you have the money for a 3D printer, this is most likely the ideal option.

Pros: Open source, many features.

Cons: Noise, difficult to use.

MakerGear M2

This 3D printer ranks high on almost every review site. Almost all users (for example, on Amazone, where 92 out of 97 rated this model 5 points) note that this is an exceptional device for its price. This 3D printer has an incredibly strong frame and some of the best components available today. It is difficult to hear any criticism from the people who bought this model. If you are looking for a great 3D printer that is priced lower than most of the major competitors, this is the machine for you. The print volume is 203x254x203 mm and the price is $1775.

Pros: Customer support, print quality, durability.

Cons: Noise, difficult to use.

Zortrax M200

This device has consistently received positive customer reviews on the 3DHubs website. The model is equipped with heated printing platform and automatic calibration, and the print volume is 200x200x185 mm. The kit comes with its own software, which makes it as easy as possible to turn a digital model into a printed object. The price of the device is $1990, and it's definitely not the cheapest model on the market, but it's worth the money. The company is certainly making a great impression both with this printer and with its growing organization.

Pros: Print quality, accuracy, ease of use.

Cons: Support for materials, inconvenient connection.

Printrbot Metal Simple

Many people call Brook Drama one of the "grandfathers" of 3D printing. His Printrbot company consistently produces high quality products at affordable prices. This device has received several awards and remains one of the most positively rated printers on the market today. The print volume of 150x150x150 mm allows the user to print not too small objects without going broke when buying. Again and again, there are reviews about the excellent resolution of printed objects, as well as the overall quality and durability of the device. All in all, it's hard to go wrong with this fully equipped model for just $59.9.99.

Pros: Durability, print quality, price.

Cons: Small print volume.

Formlabs Form 1+

This printer differs from other personal models if only because it is based on a completely different 3D printing method - stereolithography (SLA). While this process is a bit more complicated than Fused Deposition Modeling (FDM/FFF), the quality of the printed objects is significantly higher than other printers on this list. This is because SLA is simply better at 3D printing small parts. The Form 1+ is ideal for office and home use. Instead of thermoplastic threads, the device uses a light-sensitive resin that looks like syrup. The resin hardens when exposed to laser beams. The minimum layer thickness that can be achieved with this printer is 25 microns, and the print volume is 125x125x165 mm. Form 1+ costs $3299, and this is the most expensive model in the ranking - although it is very difficult to compare it with other devices.

Pros: Print quality, ease of use, looks.

Cons: Cost of use (expensive resin, electricity), material support.

MakerBot Replicator Mini

One of the best models on the list, not only based on the overall high rating from users, but also due to its small size, elegant design and the ability to access the entire MakerBot system. If you're looking for a quality device and the support of Stratasys, which is valued at over $2.5 billion, then the Mini is your choice. The device has a built-in camera that allows you to monitor the printing process, and comes with simple programs to turn models into printed objects. Among the shortcomings of the model, one can only name the fact that it only supports PLA plastic from materials, and the print volume is only 100x100x125 mm. If you're comfortable with PLA 3D printing, which, however, provides a fairly wide choice of materials, and you are not going to print large items, the MakerBot Mini is a great purchase for only $1375.

Pros: Produced by a popular company, easy to use, easy to connect.

Cons: Noise, printing speed.

Flashforge Dreamer

Even a person who has never dealt with 3D printing before is able to understand the device and the principles of operation of this model - the first object can be printed within a few hours after acquaintance. This is a simple, reliable and not too expensive 3D printer that prints with PLA and ABS thermoplastics. The print volume is 230 x 150 x 140mm, making this device ideal for almost any 3D printing task. You can get this fully enclosed 3D printer for $1299, and it's really a worthy choice.

Pros: Ease of use, print quality.

Cons: Inconvenience of connection, noise.

Ultimaker 2

Along with MakerBot, Ultimaker is one of the top-selling personal 3D printer brands, and for several reasons. The company has established itself as a manufacturer of high-quality devices that look great on the desktop. The minimum layer thickness reaches 20 microns, and the print volume is 223x223x205 mm, so the model performs well in everyday household use. It prints in PLA, ABS and U-Pet, is very easy to calibrate, set up and run, and is priced at $2499.

Pros: Products of a popular company, print quality.

Cons: Cost of use, price.

Prusa i3 Hephestos

In many cases, the simpler the device, the better it is. After all, having fewer parts reduces the risk of one of them failing. Many of the devices developed by the RepRap movement are surprisingly feature-rich and, importantly, not too expensive. The Prusa i3 Hephestos is an open source model created by bq's Innovation and Robotics department. The print volume is 215x210x180 mm, and the device itself is available in three versions, differing in resolution and print speed. The model is perfect for teenagers starting their way to becoming professional designers. The price of the device starts from €49The 9 is an excellent choice if you don't need all the extra accessories and features of the other models.


Learn more