3D print nozzle size

3D Printer Nozzle Guide - Everything about 3D printer nozzles

When dealing with the topic of 3D printing, there is a lot to consider. Before you just start printing, you should look into the possibilities and settings of your 3D printer in order to achieve the best possible printing results and to preserve the service life of the device. An important and often underestimated part of the 3D printer is the printer nozzle, which is often given little attention. Even if the nozzle of a 3D printer is a very small component, it has a significant influence on the printing speed and quality.

In this comprehensive guide, we would like to explain to you what a 3D printer nozzle is, how different nozzle types differ and how to choose the right nozzle for your requirements.

Under this post you will also find our new YouTube video, in which we summarize the advantages and disadvantages of different nozzle types and show how you can easily and easily change the nozzle on your 3D printer.

What is a nozzle and what is it used for?

Nozzle are located on the hotend and it is through which the heated filament is printed on the printing platform. With most 3D printers, the nozzle can be exchanged. Depending on the requirements, changing the printer nozzle can be very worthwhile, so you should dare to try different nozzles.

How do 3D printer nozzles differ?

A basic distinction is made between 3D printer nozzles based on the following properties:

  • Nozzle diameter
  • Material

Depending on the material and nozzle diameter, the nozzle meets different print requirements.

Nozzle diameter

3D printer nozzles are available in different nozzle diameters from 0.1 to 2.0 mm. The diameter of a nozzle also determines the possible layer height and thus indirectly the printing speed, because:

Basically, it's about how much filament is extruded and how fast.

As a rule, the maximum layer height values should not exceed 80% of the nozzle diameter. For example, a 0.4 mm nozzle has a recommended maximum layer height of 0.32 mm.

If you want to know what maximum and minimum layer height you can print with your nozzle, use the following rule of thumb:

⇒ Maximum layer height = 0.75 * nozzle diameter

⇒ Minimum layer height = 0.25 * nozzle diameter

0.4 mm nozzle as standard

For most 3D printers, the 0.4 mm nozzle has become the standard, as it is usually installed as standard and offers a good balance between resolution, precision and printing speed.

Small nozzles <0.4 mm

Small nozzles are ideally suited for the production of objects with very fine, precise details and barely visible layer traces.

Since the nozzle diameter is so small, the printing times are longer than, for example, with a 0.4 mm nozzle. In addition, special materials, such as filaments with particles, cannot be processed with small nozzles. The risk of clogging the nozzle is also much higher than with larger nozzles.

Large nozzles> 0.4 mm

Large printer nozzles ensure a higher material flow, thicker layer heights and reduced printing times. The wider extrusion and the higher layers give the printed models more stability, but they are not as finely printed and are not rich in detail. In addition, wider nozzles hardly clog and are therefore ideal for special materials such as wood, carbon fibre or glow-in-the-dark filaments.

Due to the fast possibility of printing, large nozzles are particularly recommended for rapid prototyping.

⇒ Fact: When printing with a layer height of 0.4 mm, the printing time is almost halved compared to a layer height of 0.2 mm.

Nozzle materials

Due to their relatively high thermal conductivity, 3D printer nozzles are made of different metals that influence the 3D printing process in different ways. Since some filaments have abrasive properties and therefore certain types of metal wear out faster than others, the nozzle material should be selected accordingly.

In the following, we will list the different nozzle materials with their advantages and disadvantages in order to create an overview of their abilities.

  • Brass nozzles

→ max 300 ° C.

Brass is the most commonly used material for 3D printer nozzles. It offers excellent heat transfer at a relatively low cost. When processing abrasive special filaments with wood, carbon or metal fibres, however, a brass nozzle wears out very quickly and becomes imprecise.

In order to protect the relatively soft nozzle material from excessive abrasion and to reduce the friction between the filament and the nozzle, a brass nozzle can be coated with nickel or chrome.


  • Low cost
  • High thermal conductivity


  • Low wear resistance
  • Not suitable for highly abrasive materials

  • Coated nozzles

→ max 500 ° C.

In order to protect relatively soft nozzle material from excessive abrasion and to reduce the friction between the filament and nozzle, brass or copper nozzles are also available with a nickel or chrome coating.

In addition to the improved scratch resistance, a coating also significantly increases the temperature resistance of the nozzle.


  • Higher wear resistance than normal brass or copper
  • Perfect all-rounder
  • High-temperature resistance
  • High thermal conductivity


  • Not as hard as hardened steel
  • Not suitable for permanent use with abrasive materials

  • Stainless steel nozzles

→ max 500 ° C.

Steel is another popular material for nozzles because it offers slightly better wear resistance than brass nozzles. They also, to some extent, prevent molten plastic from sticking to its surfaces and contaminating the print with lead, which is often the case with brass nozzles. Steel nozzles are therefore theoretically suitable for food-safe materials.

Steel allows a wider range of filaments to be processed but is not recommended if abrasive filaments are used frequently. It is also less heat-conductive compared to brass.


  • Better wear resistance than brass
  • Can be used for food-safe filaments


  • Lower thermal conductivity than brass
  • Lower wear resistance than hardened steel

  • Hardened Steel Nozzles

→ max 500 ° C.

Hardened steel nozzles are a useful 3D printer upgrade as they are tough enough for frequent use of abrasive materials (10 times more wear-resistant than brass nozzles) and literally offer years of use without replacement.

However, this material has an even lower thermal conductivity than the two previous materials and is more expensive to purchase. Since the inner surface of the nozzle is not as smooth as other “softer” nozzle materials, this can result in poor print quality.


  • High wear resistance
  • Very durable
  • Suitable for abrasive materials


  • Lower thermal conductivity
  • Lower print quality
  • Higher cost

  • Ruby Nozzles / Brass Ruby Nozzles

→ max 550 ° C.

Nozzles with ruby tips belong to the luxury class of 3D printer nozzles. As a rule, ruby nozzles are brass nozzles with or without a coating that have a ruby on the tip. Since the hole in the ruby can be made very precisely, there are only small diameter tolerances.

The ruby tip of the nozzle ensures additional wear resistance, which is particularly useful when processing special filaments. Compared to the other types of nozzles, the ruby nozzle is the most expensive.


  • High thermal conductivity due to the brass body
  • High wear resistance
  • High-temperature resistance


  • Higher cost

Changing the 3D printer nozzle - this is how it works

Would you like to exchange your 3D printer nozzle? In our video we show you exactly what to look out for when replacing the 3D printer nozzle.

We would be happy if you visit us on YouTube and leave a like or comment. If you want to see something specific on our channel in the future, please let us know in the comments!

What 3D Printer Nozzle Size Should I Use? - The Pros and Cons

When browsing for your last printer, 3D printer nozzle size may well have been the last thing on your mind. It’s an often overlooked detail.

Depending on what you need to print; the wrong setup could be holding you back.

In this article we’ll take a look at the options, and why you might need to explore different 3D printer nozzles, different materials, the relationship between nozzle size vs layer height and if in doubt, how to measure your actual nozzle diameter.  

How does the 3D printer nozzle size affect prints?

The nozzle diameter directly affects the 3D printer extrusion width of each line in your print. This has an effect on a few elements of your print.

If you 3D print for business (or doing large quantities of very similar prints) you’ll want to make sure your extruder is laying down the right amount.

Not too much (as you could be using more filament than necessary) and not too little (as your print times could be longer than they need to be).

Or perhaps you print various models, some very detailed and intricate, and some more practical prints (like a replacement doorknob for example) that just need to be printed quickly, and for maximum strength.

Either way, you’re going to need the right setup for you so you’re not wasting your time, wasting filament or just coming out with an undesirable print quality. You can treat this guide as a sort of 3d printer nozzle size comparison.

There’s no simple answer to what’s the best 3D printer nozzle size, you need to weigh up what you’re trying to achieve and what elements matter most to you. 

Depending on your 3D printer, various nozzles can be interchanged reasonably easily (most are screw fit) and multipacks (with different sizes in) can be picked up quite cheaply.!–split3–!

Let’s look at the various nozzle size 3D printer options commonly available:

The most common standard nozzle sizes are the 0.4mm (or 0.35mm) nozzle used by most current 3D printer manufacturers currently available. The reason for this, quite simply is that it’s a great all-rounder nozzle size.

This means you can print exceptional detail, and it won’t take forever.

That’s because you can print down to layer heights of just 0.1mm, or up to 0.3mm using a 0.4mm 3D print nozzle. The thinner the layer height, the better the detail (on the Z axis), and the thicker the layer height the fast your print will be, but with less detail.

This is more often than not, for most print jobs the best nozzle size for your 3D printer. 

Well, maybe some prints take forever – but at least it’s an acceptable amount of time. A common misconception is that if someone isn’t getting good enough print quality from their printer running a 0.4mm nozzle, they immediately think they need a smaller 3D printing nozzle size.This is Zortrax M200 printing our ABS with the stock 0.4mm Nozzle and 0.2mm 3D Print Layer Height

Another common smaller size is 0.25mm. Some printers are now offering 0.2mm, 0.15mm and Mass Portal are even experimenting with 0.1mm 3D printer extruder nozzles.

These create some incredible results for FDM machines, they managed to print the inner workings of a watch in excellent detail.  

3D Printer Resolution Explained:

Now in theory, smaller 3D printer nozzle sizes do allow you to achieve better precision. But for a lot of printers, especially lower-priced or older models – a smaller-sized extruder nozzle isn’t necessarily going to make a difference unless your printer supports the higher resolution necessary.

Like putting low profile, performance tires on an old classic car – it won’t make it go any faster or necessarily handle the corners better.

It’s similar to how 3D printer specifications on paper (such as advertised resolution) won’t always translate to better print quality on the finished article.

Similar to how Ultimaker and Zortrax have very similar resolutions on paper, but in our unbiased opinion our Zortrax creates better quality prints than our Ultimaker 2 does – for example.

Check out the fine detail below for a 3D printing resolution comparison on very small nozzle sizes. 3D printing fine detail: Close-up shot of an FDM print with a 0.1mm nozzle – Mass Portal. If you were wondering how small can a 3d printer print, then this will give you a good idea.

If you bought your 3D printer recently though, it’s likely you’re going to be able to benefit from a smaller nozzle size as the resolution across the board is getting really good.

Let’s take a look at the pros and cons to printing with smaller nozzle sizes. Some are less obvious than others. Then we’ll take a look at the underrated larger nozzles available.

Hopefully once you’ve finished this article you’ll be able to answer that “What nozzle size should I print with?” that you’ve likely been losing so much sleep over.

You’ve likely guessed already that the smaller the nozzle in your extruder, in theory the higher detail you can print.

This is great for those intricate prints, or if you need to print very thin walls for aircraft skin, or high transparency prints and similar reasons for example.

This photo of a ‘printed model plane skin was done in one layer thick on a regular 0.4mm nozzle. If we’d done it on a 0.2mm nozzle the weight (and strength) of the skin would be halved.

It’s worth noting though that a 0.2mm nozzle 3d printer does not extrude half the amount of filament that a 0.4mm nozzle does.

Oh no, thanks to Area that means that halving the diameter actually means you’re looking at extruding just 25% of filament in an 0. 2mm nozzle compared with a standard 0.4mm.

That could, if all other things being equal increase printing time by a large margin. In real terms though, it’s likely to increase by about two times longer, as you’ll usually use less filament as you print thinner wall thicknesses and thinner infill supports.

So bear that in mind if you need really strong parts; high detail and strength can only both be achieved if you’re willing to wait a long time…

Basically the smaller the nozzle size, the higher you increase your chances of 3D printer problems. Especially if you’re using cheap filament – it might work fine with lower detail, thick nozzles, but if you want specialist prints with small nozzles, it’s key to using pure, high-quality filaments. 

Other factors when printing with thin diameter nozzles are less obvious – like it’s harder to print with overhangs. This is because each layer has less width for the next layer to purchase on as your traverse an overhang for example. Bridging is also more challenging.

Psst: here’s how to print really good overhangs and bridges.

But there’s good news! Where overhangs are a little more tricky with a thinner nozzle, the supports are actually much easier to remove.

Because of the additional precision, your slicer can use the minimum filament necessary between your model and the supports, so they’ll break away more easily – and have less broken contact area that needs sanding.

One last point, that really is the elephant in the room is the ease with which very thin nozzles are clogged. If you get down to 0.2mm or even 0.1mm sizes, you only need a small particle to clog the hotend.

We’re not trying to plug our own product here (well, maybe a little) but it’s increasingly important to print with excellent quality filament the thinner you go.

No contaminants in your filament, and clean out the nozzle sufficiently and regularly and you’ll turn an otherwise problematic printing experiment into a reliable endeavor.

So it’s worth mentioning you’d benefit from using a filament dust catcher when printing with those extra fine nozzles. 

Before we consider a wider selection of 3D printer nozzle diameter, it’s worth taking a moment to understand the relationship between nozzle size and layer thickness.

In short, the former dictates horizontal details (along the x and y axis), and the latter controls the resolution on the vertical, or z axis.

How do I measure the nozzle size? 

While the manufactured diameter of your nozzle should be engraved on the side of it, it’s not always possible to read this if it’s already mounted in your extruder, or if you’ve been printing with it for a while, you may not be confident it’s the same size as it was before.

Some materials can be more abrasive than others, wearing your nozzle to a larger diameter.  

To work out what size your nozzle is really extruding, extrude some material into the air very slowly (fast can alter the shape or size) at the coolest setting you can extrude that material at, around 1mm/s.

Once cool, use a micrometer if you have one, they tend to be more accurate than digital calipers. You should find this is reasonably accurate. 

Bear in mind it’s likely the filament will have expanded after extruding, but doing it this way should minimize this. Poor quality filament, or printing way too hot (especially if you’re extruding 1mm/s) will cause the material to expand more, giving an inaccurate reading. 

Having said all this, it’s often useful to know the swollen die size that your filament is expanding to after extrusion if you’re working to get a really nice, precise finish on your prints. So feel free to experiment with a faster speed that’s a little more similar to your actual printing. 

Ultimately the most important metric is volume of filament delivered. This is simply related to your actual filament diameter (not just the advertised diameter) and the speed you’re extruding.

That’s one of the reasons it’s so important your filament diameter is consistent to get nice-looking prints. So it pays to get good quality filament.  

What is layer height in 3D printing?

Simply put, it’s the thickness of each line of extruded material that makes up each layer of your print.

The thinner the layer height (or layer thickness) the finer the detail of the print on the Z axis (the vertical dimension of your print), but the more layers it will need. Leading to a longer print time. 

They are related but not completely independent from each other. For example, it is possible to print a thinner nozzle with a thicker layer height if vertical resolution is less important to you, and a thicker nozzle with very thin layer heights for vice versa priorities – but if you take this route to the extremes it will cause problems.

To maintain adequate pressure your layer height wants to be at the very least 20% smaller than the width of your nozzle – in most instances though we recommend it to be 50% for the best results. 

How do I gauge the correct distance from the nozzle to the bed? 

Getting this right can mean the difference between your print not even starting, and your print finishing with a perfectly smooth, glass-like surface under it.  

People assume a feeler gauge 3D printer setup is required – but even this can be too thick. We recommend using very thin paper, like receipt paper to gauge the correct distance of your nozzle from the bed. 

Please the receipt paper under the nozzle, and move the nozzle down step by step until the receipt paper has just a little resistance to it when you try to move it out. Printing at this height will give the bottom of your prints a professional glass-like finish. 

Here’s our explanation for the best 3d printer layer height combo.

What’s The Max 3D Printing Layer Height vs Nozzle Size?

You don’t necessarily need a 3D printer layer height calculator, but a general rule of thumb is your max layer height is 50% the width of your nozzle. In some instances you can go higher (maybe 75%) but you may sacrifice reliability.

It’s best to experiment with the parameters of your print, as long as you understand the relationship between 3D printer nozzle size vs layer height you’ll be on track.  

So for a 0.4mm nozzle, you’ll be looking to print at 0.2mm layer height, or up to 0.3mm. Your minimum would want to be around 0.1mm, any lower than this and you’re just increasing your waiting time for not much benefit (on the same 0.4mm size nozzle). 

Just don’t forget to adjust filament flow rate or extrusion pressure to compensate for any layer height vs nozzle size changes. Though most updated slicers should handle standard extrusion width vs nozzle diameter for you automatically. Here’s our mini guide on 3D printer nozzle height; explaining the close relationship between nozzle size, layer height and pressure. 

For most cases we recommend printing thinner layers with thinner nozzle diameters, and thicker layers with thicker nozzles, generally.

Just note that if you do print with a thicker nozzle diameter and a very thin layer height, you’ll need to bring your extrusion settings in the slicer way down to prevent over-extrusion.

It’s also worth noting, regardless of size, you’ll always want to make sure you have a clean 3d printer nozzle at all times. One of the easiest ways to do this is with high quality cleaning filament. You only need to use a few grams of it each time you clean, but it’ll prevent carbon build up over time. 

If you’ve got a partially clogged nozzle, it’s effective enough to help with full nozzle cleaning too – flushing out all the impurities without being abrasive.  

Another point to note, if you’re printing thicker layer heights (in proportion to nozzle diameter) your overhangs will look a bit messier.

In contrast to thinner layer heights, or better 3D printer layer resolution, will improve the detail on Z axis. Here’s a diagram to better illustrate layer height 3d printing.

So why would I use a 0.8mm or thicker nozzle?

These were more common on older machines, but they’re making a comeback. It’s all about using what you need, and no more. For a lot of prints, the stock 0.4mm that likely came with your printer could be overkill as far as detail is concerned.

If you want strength and speed and detail is less important, printing for a nozzle size comparison with a 0. 8mm or even a 1.0mm nozzle could be your answer.

This is especially important if you’re printing for business.

Need to get more prints in a shorter time frame from your machine and increase profits? Switch up the nozzle size – remember a 0.8mm could reduce print times down to ¼ of a print done with a 0.4mm.

The savings could be massive.

And don’t forget, prints done with 0.8mm can still be impressively detailed depending on your printer.

The only slight downside could be that you use slightly more filament, but with the thicker part walls you can likely get away with lower infill to compensate.

There’s no single best printing nozzle size diameter for all prints, you just need to consider what’s appropriate for what you’re wanting to print. 

Which leads us onto…

What Nozzle Size Should I Use For Composite Materials? 

It’s worth noting that composite filaments (any particle based filaments like Woodfill, Copperfill, Carbon Fibre Nylon or Glass Reinforced Nylon) will have trouble extruding through a thinner 3D print head.  

That’s because these filaments have particles that, although still nano-sized, can have issues flowing through nozzles under 0.4mm diameter. We recommend that the best printing nozzle diameter is 0.5mm for composite materials, and for any metal, glass or Carbon Fiber materials you’ll need a hardened nozzle.

The brass one that came with your printer likely won’t last, and will bore out to a larger size after a few hours of printing. 

A 0.5mm stainless nozzle or tungsten nozzle will last much longer for composite filaments and cost £5-£20. Or you might want to really splash out on one of these.

So if you’re still wondering “What extruder size to choose?” let’s recap with the pros and cons of smaller nozzles so you can work out the best nozzle size for your 3D printer:

  • Much finer details, providing your printer supports the additional resolution.
  • Can take significantly longer to print, but thicker nozzles can cut the time down dramatically. Spending 5 mins changing the size on longer prints could be worth the time investment!
  • Overhangs are a little more challenging to print, but supports break away more cleanly.
  • You need seriously good filament, or your nozzle could block easily. Is it worth the risk?

Hopefully this article has shed some light on the options available to you. If it has, or you have further questions related to this, please do comment below so we can help – we love to hear your thoughts or even see photos of experiences you’ve had with different nozzle sizes.

When experimenting with various types of nozzle and rate of using filament, it may be useful to know the length of the remaining filament on the spool. We’ve put down a chart for various spool sizes and filament diameters for the different materials, you can find our filament length guide here. 

  • For any more nozzle information, read our full guide to 3D printer nozzles.
  • We also have a guide to 3D printer hot ends
  • How to unclog a clogged nozzle
  • How to print overhangs and bridges over 45 degrees
  • The best FDM 3D printers

How to choose the nozzle size for a 3D printer? Pros and cons