Aluminum 3d printing service near me


Metal 3D Printing Service for Custom Parts

Back

  • Materials

    Materials by Service

    Injection MoldingCNC Machining3D PrintingSheet Metal

    Materials by Type

    PlasticsMetalsElastomers

    Related Links

    Customer Supplied ResinsColors

    Injection Molding Material Alternatives Guide

    Struggling with thermoplastic material shortages? We created a detailed guide to resin substitutes for ABS, PC, PP, and other commonly molded thermoplastics.

     

    Download

  • Resources

    Design Tips Guides and Trend Reports Case Studies Design Aids Webinars and Trade Shows

    Blog Videos FAQs Educators and Students Glossary

    Industries Medical Aerospace Automotive Consumer Electronics Industrial Equipment

  • About Us

    Who We Are Why Protolabs? Research and Development Cool Idea Award Partnerships Sustainability and Social Impact

    Careers Investors Locations Press Procurement

    Contact Us
    Proto Labs, Inc.
    5540 Pioneer Creek Dr.
    Maple Plain, MN 55359
    United States

    P: 877.479.3680
    F: 763.479.2679
    E: [email protected]

    Best-in-Class Online Quoting

    After uploading your part design, you'll receive an online quote that includes manufacturing analysis to help improve part manufacturability. Within your quote, you can also adjust quantity and material and see price changes in real-time.

    Learn More

Get a QuoteSign In

Get quality metal 3D-printed prototypes and production parts. Request an online quote today.

GET METAL PARTS

Certifications

ISO 9001:2015 | AS9100D | ITAR Registered

Jump to Section

→ Capabilities
→ Available Alloys
→ Compare Material Properties
→ Surface Finishes
→ Post-Processing
→ Why Metal 3D Printing?

Direct metal laser sintering (DMLS) is an industrial metal 3D printing process that builds fully functional metal prototypes and production parts in 7 days or less. A range of metals produce final parts that can be used for end-use applications.

Metal 3D printing technology is commonly used for:

  • Prototyping in production-grade materials
  • Complex geometries
  • Functional, end-use parts
  • Reducing metal components in an assembly

We hope you find this guide helpful. If the file did not download, you can find it here.

Metal 3D Printing Guide

Jump start your metal 3D printing with this guide that covers material selection, design, post-processing, and quality inspections. 

United States of AmericaAfghanistanÅland IslandsAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, the Democratic Republic of theCook IslandsCosta RicaCôte d'IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and McDonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People's Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People's Democratic RepublicLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, the Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesia, Federated States ofMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorthern Mariana IslandsNorwayOmanPakistanPalauPalestine, State ofPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarRéunionRomaniaRussian FederationRwandaSaint BarthélemySaint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSuriNameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwan, Province of ChinaTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited States Minor Outlying IslandsUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofViet NamVirgin Islands, BritishVirgin Islands, U. S.Wallis and FutunaWestern SaharaYemenZambiaZimbabwe

I agree to receive email messages containing service updates and Design Tips from Protolabs and its affiliates


Metal 3D Printing Capabilities

Our basic guidelines for metal 3D printing include important design considerations to help improve part manufacturability, enhance cosmetic appearance, and reduce overall production time.

Metal 3D Printing Tolerances

For well-designed parts, tolerances of +0.003 in. (0.076mm) plus 0.1% of nominal length can typically be achieved. Note that tolerances may change depending on part geometry.

Max Dimensions

Layer Thickness

Minimum Feature Size

Tolerances

*At this time, Inconel 718 and Aluminum are the only materials available on our large format, X Line machine




Metal 3D Printing Material Options

Below is our available metal alloys for 3D printing. Various heat treatments are available depending on material.

Stainless Steel (17-4 PH)

Stainless Steel 17-4 PH is a precipitation hardened stainless steel that is known for its hardness and corrosion resistance. If needing a stainless steel option, select 17-4 PH for its significantly higher tensile strength and yield strength, but recognize that it has far less elongation at break than 316L. Final parts built 17-4 PH receive vacuum solution heat treatment as well as H900 aging.

Primary Benefits

  • Heat treated for full hardness and strength
  • Corrosion resistance


LEARN MORE>

Stainless Steel (316L)

Stainless steel 316L is a workhorse material used for manufacturing acid and corrosion resistant parts. Select 316L when stainless steel flexibility is needed; 316L is a more malleable material compared to 17-4 PH. Final parts built in 316L receive stress relief application.

Primary Benefits

  • Acid and corrosion resistance
  • High ductility

LEARN MORE>

Aluminum (AlSi10Mg)

Aluminum (AlSi10Mg) is comparable to a 3000 series alloy that is used in casting and die casting processes. It has good strength -to-weight ratio, high temperature and corrosion resistance, and good fatigue, creep and rupture strength. AlSi10Mg also exhibits thermal and electrical conductivity properties. Final parts built in AlSi10Mg receive stress relief application.

Primary Benefits

  • High stiffness and strength relative to weight
  • Thermal and electrical conductivity


LEARN MORE>

Inconel 718

Inconel is a high strength, corrosion resistant nickel chromium superalloy ideal for parts that will experience extreme temperatures and mechanical loading. Final parts built in Inconel 718 receive stress relief application. Solution and aging per AMS 5663 is also available to increase tensile strength and hardness.

Primary Benefits

  • Oxidation and corrosion resistance
  • High performance tensile, fatigue, creep, and rupture strength


LEARN MORE>

Cobalt Chrome (Co28Cr6Mo)

Cobalt Chrome (Co28Cr6Mo)​ is a superalloy is known for its high strength-to-weight ratio.

Primary Benefits

  • High performance tensile and creep
  • Corrosion resistance


LEARN MORE>

Titanium (Ti6Al4V)

Titanium (Ti6Al4V) is a workhorse alloy. Versus Ti grade 23 annealed, the mechanical properties of Ti6Al4V are comparable to wrought titanium for tensile strength, elongation, and hardness. Final parts built in Ti6Al4V receive vacuum stress relief application.

Primary Benefits​

  • High stiffness and strength relative to weight
  • High temperature and corrosion resistance


LEARN MORE>


Compare Material Properties

20 μm = high resolution (HR)
30, 40, and 60 μm = normal resolution (NR)

  • US
  • Metric

Materials Resolution Condition Ultimate Tensile Strength
(ksi)
Yield Stress
(ksi)
Elongation 
(%)
Hardness
Stainless Steel
(17-4 PH)
20 μm Solution & Aged (H900) 199 178 10 42 HRC
30 μm Solution & Aged (H900) 198 179 13 42 HRC
Stainless Steel
(316L)
20 μm Stress Relieved 82 56 78 90 HRB
30 μm Stress Relieved 85 55 75 88 HRB
Aluminum
(AlSi10Mg) 
20 μm Stress Relieved 39 26 15 42 HRB
30 μm Stress Relieved 50 33 8 59 HRB
40 μm Stress Relieved 43 27 10 50 HRB
Cobalt Chrome
(Co28Cr6Mo)
20 μm As Built 182 112 17 39 HRC
30 μm As Built 176 119 14 38 HRC
Inconel 718 20 μm Stress Relieved 143 98 36 33 HRC
30 μm Stress Relieved 144 91 39 30 HRC
30 μm Solution & Aged per AMS 5663 208 175 18 46 HRC
60 μm Stress Relieved 139 83 40 27 HRC
60 μm Solution & Aged per AMS 5663 201 174 19 45 HRC
Titanium
(Ti6Al4V)
20 μm Stress Relieved 153 138 15 35 HRC
30 μm Stress Relieved 144 124 18 33 HRC

Materials Resolution Condition Ultimate Tensile Strength
(MPa)
Yield Stress
(MPa)
Elongation
(%)
Hardness
Stainless Steel
(17-4 PH)
20 μm Solution & Aged (H900) 1,372 1,227 10 42 HRC
30 μm Solution & Aged (H900) 1,365 1,234 13 42 HRC
Stainless Steel
(316L)
20 μm Stress Relieved 565 386 78 90 HRB
30 μm Stress Relieved 586 379 75 88 HRB
Aluminum
(AlSi10Mg) 
20 μm Stress Relieved 268 180 15 46 HRB
30 μm Stress Relieved 345 228 8 59 HRB
40 μm Stress Relieved 296 186 10 50 HRB
Cobalt Chrome
(Co28Cr6Mo)
20 μm As Built 1255 772 17 39 HRC
30 μm As Built 1213 820 14 38 HRC
Copper
(CuNi2SiCr)
20 μm Precipitation Hardened 496 434 23 87 HRB
Inconel 718 20 μm Stress Relieved 986 676 36 33 HRC
30 μm Stress Relieved 993 627 39 30 HRC
30 μm Solution & Aged per AMS 5663 1434 1207 18 46 HRC
60 μm Stress Relieved 958 572 40 27 HRC
60 μm Solution & Aged per AMS 5663 1386 1200 19 45 HRC
Titanium
(Ti6Al4V)
20 μm Stress Relieved 1055 951 15 35 HRC
30 μm Stress Relieved 993 855 18 33 HRC

These figures are approximate and dependent on a number of factors, including but not limited to, machine and process parameters. The information provided is therefore not binding and not deemed to be certified. When performance is critical, also consider independent lab testing of additive materials or final parts.



Surface Finish Options


Standard Finish

Expect roughness values of 200 to 400 µin Ra (0.005 to 0.010mm Ra), depending on material and resolution. Support structures are removed and layer lines are visible.


Custom Finish

We offer brushed surfaces in a range of grits and polished mirror finishes. Be sure to indicate if the custom surface finish is for functional or aesthetic purposes so we can best consult you on our custom options.

Post-Processing Capabilities for Metal 3D-Printed Parts

Improve strength, dimensional accuracy, and cosmetic appearance of final metal components with DMLS for production.

Surface Finishing

  • 3- and 5-axis milling
  • Turning
  • Polish (Mirror or Brushed)
  • Passivation
  • Wire EDM
  • Tapping and reaming

Heat Treatments

  • Stress relief
  • NADCAP heat treatment
  • Hot isostatic pressing (HIP)
  • Solution annealing
  • Aging

Mechanical Testing

  • Tensile
  • Rockwell Hardness

Powder Analysis & Material

  • Traceability
  • Chemistry
  • Particle size and distribution analysis


Why Use Metal 3D Printing?

See how metal additive manufacturing technology can be used to reduce components within an assembly, fabricate complex geometries, and ultimately save you time and costs.

Click to enlarge

How Does Metal 3D Printing Work?

The DMLS machine begins sintering each layer—first the support structures to the base plate, then the part itself—with a laser aimed onto a bed of metallic powder. After a cross-section layer of powder is micro-welded, the build platform shifts down and a recoater blade moves across the platform to deposit the next layer of powder into an inert build chamber. The process is repeated layer by layer until the build is complete.

When the build finishes, an initial brushing is manually administered to parts to remove a majority of loose powder, followed by the appropriate heat-treat cycle while still fixtured in the support systems to relieve any stresses. Parts are removed from the platform and support structures are removed from the parts, then finished with any needed bead blasting and deburring. Final DMLS parts are near 100 percent dense.


Large Format Metal 3D Printing

We recently added the GE Additive X Line to our fleet of metal 3D printers to build large Inconel 718 and Aluminum (AlSi10Mg) parts. Have a project that might be a good fit? Contact us and we can discuss your requirements.

Learn More >

Metal 3D Printing for Production

Improve strength, dimensional accuracy, and cosmetic appearance for end-use metal components with post-processing options like CNC machining and heat treatments.

Learn More >


Resources

Post-Processing for Metal 3D Printing

Learn how to improve dimensional accuracy, surface roughness, and mechanical properties on metal parts with high-requirement applications.

Read Design Tip

Combining Part Assemblies with Additive Manufacturing to Reduce Cost and Increase Performance

How to find the right opportunities to consolidate multi-part assemblies into single components with industrial 3D printing

Read White Paper

Inconel 718: A Workhorse Material for Additive Manufacturing

Inconel 718 is a go-to material for additive manufacturing of metal parts.

Read Blog

Large Format 3D Printing for Aluminum and Inconel Parts

When you’re printing really large parts in metal, it’s great to have a choice of materials. Aluminum and Inconel 718 both make a lot of sense, but which one is the best for your application?

Read Blog

Instant quotes on 3D-printed parts

Get A Quote

Custom Metal 3D Printing Service

CapabilitiesCustom Online 3D Printing ServiceCustom Metal 3D Printing Service

High-quality Industrial Metal 3D Printing: DMLS and Binder Jetting Service |
Free Shipping on All US Orders - No Minimums

Advantages of Metal 3D PrintingDMLS vs. Binder JetMaterialsApplicationsDownload the Guides

What is Metal 3D Printing?

Metal 3D printing, an additive manufacturing process, produces parts by fusing together metal particles layer by layer to form a metal part. It is often chosen as an alternative to CNC machining or metal casting because it can produce parts with the strength and durability of metal while also taking advantage of the design freedoms afforded by 3D printing. It can produce complex designs including lattices and topology-generated structures, both which are impossible to manufacture via traditional CNC machining. 

Use the 3D viewer above to preview Xometry’s part rendering features.

Advantages of Metal 3D Printing

Metal 3D printing is advantageous because it can produce high-performance, complex metal parts that are suited for a range of end environments. Metal 3D printed parts are isotropic, meaning they have even, multi-directional strength, and have the superior mechanical properties of metals like aluminum, stainless steel, titanium, Inconel, tool steel, and stainless steel-bronze composites. 

3D metal printing can also be used to combine multiple assembly components into one part. This typically results in a stronger structure by reducing the points of failure introduced by threads and inserts.

With metal 3D printing, CAD file information is sent directly to a printer meaning parts are typically cheaper and faster than producing machined metal parts. Machined metal parts have overhead costs like tooling set-up and longer machining time. Most 3D print metal parts can be turned around in less than a week.

Metal 3D Printing

Direct Metal Laser Sintering (DMLS) 3D Printing Service

Upload your CAD files to get an instant quote on metal prototypes and production parts. Free shipping on all US orders.

Direct Metal Laser Sintering (DMLS) 3D Printing Service

Metal Binder Jetting 3D Printing Service

Upload your CAD files to get an instant quote on parts. Free shipping on all US orders.

Metal Binder Jetting 3D Printing Service

Choosing Between DMLS or Binder Jet Metal

Xometry's 3D metal printing services include direct metal laser sintering (DMLS) and metal binder jetting as options. These processes are suitable for creating metal prototypes, tooling, and production parts on demand. However, each metal 3D printing process uses different metals and fusing methods, resulting in parts with different mechanical properties, prices, and lead times.

Overview of Direct Metal Laser Sintering

DMLS, also known as selective laser melting (SLM), uses a laser to selectively fuse sections of fine metallic powder from the ground up. DMLS is advantageous because it can produce fully dense parts for fluid transfer applications. DMLS can use aluminum AlSi10Mg, stainless steel, maraging steel, tool steel, cobalt chrome, and Inconel. It is more expensive than binder jetting but has superior mechanical properties for high-precision applications. Learn more about DMLS materials, post-processing, tolerances, and applications →

    Overview of Binder Jet 3D Printing

    Metal binder jet is a multi-step process that first selectively deposits a binding agent onto a metal powder bed, layer by layer, to hold the metal powder in a 3-dimensional shape. This resulting shape is left to cure, then put into a furnace to sinter or be infiltrated with bronze. Binder jet parts with overhanging features are supported by loose powder on all sides of the part, which usually eliminates the need for post-processing.  

    Binder jetting is a popular metal 3D printing choice because parts are cheap and fast, which allows for higher volume, cost-effective production. Binder jetting metal parts are excellent for functional prototypes or end-use parts with a density of ~95% or greater. Metal binder jetting is also frequently used by artists and hobbyists because of its ability to create complex features at a fraction of the cost of DMLS or machining. Unlike DMLS, binder jet parts are prone to shrinkage so engineers should design parts with design-for-manufacturing principles in mind. This could include scaling their CAD model size by 1-2% and enlarging holes. Learn more about binder jetting materials, post-processing, tolerances, and applications →

      Direct Metal Laser Sintering Material Properties

      • Aluminum AlSi10Mg
      • Stainless Steel 17-4
      • Stainless Steel 316/L

      New!

      Metal Binder Jetting Material Properties

      • X1 Metal 420i (420 stainless infiltrated with bronze)
      • Six finishes available

      Applications of Metal 3D Printing in Various Industries

      Metal 3D printing can be used for rapid industrial tooling, where the metal 3D print can be used for parts with complex curvatures and small, thin-walled parts like conformal jigs and fixtures, stamps, dies, and cutting inserts.  

      For other industries like consumer products, robotics, aerospace, and defense, metal 3D printing can be used for integrated fastening features, end-effectors, and metal lattice structures. Since metal 3D printed parts have excellent durability and strength, they can be used in fully functional late-stage prototypes or end-use parts for any of the above applications.

      Read about how this global distributor uses DMLS for custom shading systems, including high-strength coupling brackets and zipper assemblies.

      Ready to get started on your custom metal 3D printing quote?

      Free shipping on all 3D printing

      Why Choose Xometry for 3D Metal Printing Service?

      Endless Options

      Choose from millions of possible combinations of materials, finishes, tolerances, markings, and certifications for your order.

      Easy to Use

      Get your parts delivered right to your door without the hassle of sourcing, project management, logistics, or shipping.

      Vetted Network

      We are ISO 9001:2015, ISO 13485, and AS9100D certified. Only the top shops that apply to become Suppliers make it through our qualification process.

      Get the Binder Jetting Design Guide

      Get the DMLS Design Guide

      3D printing to order in Nizhny Novgorod, the cost of services

      The cost of printing on a 3d printer allows you to use the service not only for commercial and state enterprises, but also for individuals - innovative production technologies have become widely available. Prototyping of 3d models is the reading of information from a computer program by special equipment and translation into a real object by successive building up layer by layer until the formation of a finished product. ProPlast-NN LLC carries out 3d printing to order - the price of is calculated individually depending on the size of the object, the number of samples ordered, the material from which they will be made and the method of prototyping.

      3d printing and prototyping - the latest technologies in practice

      The combination of computer technology with production allows you to multiply the speed of production, reduce the cost of creating the necessary items. Volumetric printing is developing at a rapid pace, from the realm of fantasy, it has become a familiar production process, which can be carried out using various methods. Order 3d printing in Nizhny Novgorod for one model or batch of products, just call Pro Plast-NN LLC at the numbers listed on the site. The customer will receive a three-dimensional plastic part, made with a high degree of accuracy according to the drawings or based on a real analogue. Small-scale production of products by 3D printing and prototyping is possible.

      Where the created 3d models and prototypes are used

      Prototyping on 3d printers allows you to quickly and at low cost get a sample of the desired part from a polymer material, made with a high degree of accuracy, without roughness or distortion. Depending on the technology used and the material from which the sample is made, the product acquires high-tech properties: ideal shape, strength, plasticity, temperature stability. Models have found application in many areas, so they make custom 3d printing companies of different specializations:

      • medicine;
      • automotive;
      • serial industrial production: mechanical engineering, instrumentation, metallurgy;
      • architecture - when creating models of buildings and complexes;
      • design;
      • souvenir production.

      How 3d prototyping is carried out

      The basis for prototyping is a 3d image of an object, compiled by a computer program with three-dimensional modeling functions. nine0003 3d custom prototyping is performed with high accuracy of transferring an image into a physical object using one of several possible methods:

      1. FDM (Fused Deposition Modeling). A moving molten polymer thread forms an object of complex geometric shape in layers, which can subsequently withstand high mechanical and thermal loads.
      2. SLS (Eng. Selective Laser Sintering). This is the sintering of a powder in a container under the targeted action of a laser beam. nine0026
      3. MJM (from the English. Multi Jet Modeling - modeling with many nozzles). Multi-nozzle 3d printer prototyping , applying molten material with multiple inkjet heads, based on the principle of laser printer.
      4. LOM (from the English Laminated Object Manufacturing - the production of an object by lamination). Bonding layer by layer of thin films, as is done with lamination. After reaching the desired volume with a laser tool, an object of the desired shape is cut out of the mass. nine0026
      5. SLM (from English Selective Laser Melting - selective laser melting). Selective fusion of metal with a targeted laser beam, resulting in a solid object.
      6. EBM (from the English Electron Beam Melting - electron beam melting). Creation of a product from a powder that is melted by a directed electron beam.
      7. STL (from English stereolithography - stereolithography). Purposeful formation of a solid object by a laser beam directed into a container with liquid polymer rubber. nine0026

      Benefits of 3d printing and prototyping

      What are the advantages and benefits for a customer who decides to order 3D printing with printer?

      Before launching a new product into mass production, an enterprise can purchase a prototype, test it, make changes to avoid errors in the design development of the product, and reduce the cost of production.

      If a private or public enterprise needs to produce a small batch of products, it is more profitable for him to apply for a small-scale prototyping service than to carry out design and engineering development and testing of prototypes, reconfigure production, use labor resources and equipment. nine0003 Printing on a 3D printer at affordable prices will save businesses a significant amount, reduce production costs.

      The desired samples can be obtained in a short period, regardless of the degree of complexity of the object being created. Typically, the prototyping process lasts from one to ten days, depending on the specifics of the chosen manufacturing method. You can place an order for 3D printing at Pro Plast-NN LLC - we will answer your questions, calculate the cost, conclude an agreement and print products in a short time. nine0009

      The cost of 3d printing on the printer is low, which allows customers to reduce their own costs for design development, testing and sample production. LLC "Pro Plast-NN" makes high-quality 3D printing - the price is calculated by managers individually, depending on the volume, complexity of the work, the chosen manufacturing method and the material from which the sample is printed.

      The cost of prototyping and creating 3d models

      Answer to question how much it costs to print on a 3d printer depends primarily on the number of ordered products, the material from which the product is made, the size of the object, and the technology of its manufacture.

      The company "Pro Plast-NN" has the possibility of small-scale production of parts - we can produce a whole batch of products. The cost of a single sample is higher than products produced in batches.

      Pro Plast-NN LLC offers 3D printing in Nizhny Novgorod at prices below market prices. Many businesses and individuals who once applied for the service prints on a 3d printer to order become our regular customers - we guarantee the quality of the resulting products, fast production speed, meeting deadlines.

      High precision aluminum 3D printing by Sprint 3D!

      aluminum 3D printing is a relatively new technology in the production of high strength metal products. Using aluminum alloys, you can create almost any product - from home decor and souvenirs to parts of industrial equipment or even aircraft. nine0009

      SPRINT3D is already using aluminum 3D printing technologies for its customers. We use the latest equipment - Renishaw AM400 (SLM) aluminum 3D printer , which allows us to grow products of almost any complexity based on metal powders.

      We invite you to learn more about aluminum 3D printing, features and benefits.



      Why aluminum 3D printing is a new step in production

      First and foremost are the materials used. Not just powdered aluminum is used. The material itself is quite malleable. But when nanoparticles are mixed with raw materials, crystallization occurs, which greatly increases the strength of finished products and prevents the formation of cracks during their hardening.

      For the first time, the technology has been successfully applied in the aerospace industry. It was practically inaccessible to the general public. Commercial/Industrial

      aluminum 3D printer is a new phenomenon. But even today it solves the most difficult tasks:

      • Allows small-scale production of metal products. The main advantage is high geometric accuracy, which was previously unavailable.
      • Suitable for low volume production and prototype printing. For example, to check the ergonomics of the product and carry out the necessary checks.
      • This is the best choice for tool making. Complexity, dimensions, geometry - everything is individual. nine0026

      We use the most suitable production material, aluminum alloy AlSi10Mg-0403. It contains aluminum alloyed with silicon (no more than 10%), magnesium, and other components in small quantities. Thanks to silicon, the alloy becomes much stronger than pure aluminum. In addition, an oxide layer is formed on the surface of the printed products, which has increased corrosion resistance. It can even be enhanced using chemical anodizing technology. nine0009

      4 key benefits of

      3D printing with aluminum

      There are many more benefits, but we will focus on the main ones:

      1. Increased flexibility in design and production. For example, the technology allows the creation of complex internal channels, mesh structures and bionic elements. Previously, this required the serious work of specialists and the introduction of expensive technologies into production.
      2. Short design and production times. nine0003 3D printing with aluminum is much easier and faster than creating similar products using other methods. First of all, due to the maximum automation of the process.
      3. Reduced finished product weight. Similar blanks made using other technologies weigh more. This puts some restrictions in terms of operation and their implementation in various units, tools and mechanisms.
      4. Reduced financial costs in production. With the same budget and volume of material, it is possible to produce a numerically large batch of products and, in general, reduce costs by at least a few percent. nine0026

      Existing mathematical models that have been used for 3D printing on other equipment can be quickly and inexpensively optimized for 3D printing with aluminum on new equipment. At all stages of production, product control is ensured. For this we use computed tomography. This allows you to eliminate even the slightest defects.



      Our

      Aluminum 3D Printer AM400

      AM400 is a versatile printer that allows you to work not only with the mentioned AlSi10Mg-0403, but also with other metal powders. But we use it mainly in conjunction with aluminum powder materials. One of the key advantages of this printer is the ability to quickly change the printing system between different types of metal. This reduces production time and allows different materials to be processed on the same machine. nine0009

      Main parameters of the model:

      • Working area: 25 cm x 25 cm x 30 cm.
      • The level of argon use is at least 60% lower than in analogues.

      The printer is already widely used in the aerospace industry. The reason is the ability to reduce the weight of the product, while maintaining all its parameters and strength indicators. The AM400 allows you to create particularly complex parts. For example, with complex internal cooling circuits. Previously, this was not possible due to the use of outdated metal casting methods. They did not allow creating models of high complexity. nine0009

      The AM400 aluminum 3D printer is ideal for small batch production. But if necessary, it can also be used for mass production.



      Selective Laser Melting Technology and Features

      The AM400 supports the SLM laser melting technique. This is one of the newest destinations used in the most demanding segments:

      • engineering sector;
      • space/aerospace;
      • production of spare parts and structural products.

      3D printing with aluminum paired with SLM technology allows you to create functional metal products with increased construction accuracy. For example, you can implement complex systems of channels within the product for cooling.

      Key features of the SLM:

      • The vacuum technology used saves 60 to 80% argon. nine0026
      • Preparation of equipment for production - no more than 15 minutes.
      • Focal spot - 70 microns. This gives an improved quality of model building in this class.
      • The powders used are practically not in contact with the atmosphere.
      • For R&D powders, the built-in small chamber can be used.
      • Renishaw branded encoders guarantee increased durability.

      And this is only a small part of all the benefits. nine0009

      Our offer

      SPRINT3D company prints metal parts, engine elements, components of complex metal structures. We also carry out 3D printing with aluminum for the medical industry.

      Contact our manager to discuss production possibilities, terms and main parameters of future products. We will provide convenient conditions, a comfortable price and standardized quality of 3D printing of all products.


      Learn more