Eos metal 3d printing


Additive Manufacturing & 3D Printing Solutions

EOS is leading supplier for responsible manufacturing solutions via industrial 3D printing technology. With our innovative EOS 3D printers, we are leaders in technology and quality for high-end solutions in additive manufacturing (AM). Founded in 1989, we are pioneers in the field of metal 3D printing (DMLS) and providers of highly productive systems for additive manufacturing with plastics. Our portfolio also includes worldwide service and comprehensive consulting offers for additive manufacturing.

3D PRINTER FOR YOUR PRODUCTION

On Ariane program, we are combining our innovative strength with the expertise of EOS. Together, we work on the additive manufacturing of an injector head for a rocket engine. The results are impressive: Significant reduction in production time and 50 % lower costs.

Steffen Beyer

|

ArianeGroup

The enormous advantage of additive manufacturing is that we can always manufacture replacement parts that are as good as new, allowing us to keep our trains properly maintained for decades. We do not have to compromise on quality or performance. The cost is also lower than custom molds.

Florens Lichte

|

DB Fahrzeuginstandhaltung GmbH

With EOS’ industry-leading laser sintering 3D printing technology, Under Armour can deliver shoes to the marketplace in a meaningful way, creating truly amazing, desirable products which solve our customers’ needs in ways that could have never been imagined before. Together, our two organizations make a formidable pair.

Clay Dean

|

Under Armour

The 3D printed valve block has proven that additive manufacturing with EOS technology is feasible for building critical primary flight components.

Alexander Altmann

|

Liebherr-Aerospace Lindenberg

We believe EOS displays the maturity and the professionalism which we try to betray ourselves. We are not just a racing team, we are an engineering company. All our products, all our race cars are based on sound engineering decisions and we can see this reflected in EOS.

Richard Brady

|

Williams Martini Racing

We’re only strong with our customers by our side and that’s why we focus on your success. Together with you, we are always working on topics of the future, further development of our additive manufacturing solutions, and the general answers that industrial 3D printing can provide to challenges from various industries, so that our technology can give you a truly competitive edge.

EOS is the right partner for manufacturing companies. We offer industry- and customer-specific solutions for complex challenges in industrial 3D printing. Our systems are robust and reliable, and they deliver consistent results even in the most demanding product environments. The components of our modularly structured portfolio of solutions are optimally coordinated with one another and can be combined according to your requirements. We help companies from a wide range of industries exploit the potential of 3D printing in the best possible way, for example in the medical, aerospace and tooling sectors, the industry, for lifestyle products, and in the automotive sector.

How Does Additive Manufacturing Work?

In additive manufacturing, material is applied layer by layer in precise geometric shapes based on a CAD model. In contrast, conventional manufacturing processes typically involve milling, carving or otherwise removing material to create an object. The terms 3D printing and additive manufacturing are often used synonymously. Strictly speaking, however, a distinction must be made: 3D printing is the more colloquial term. Additive manufacturing refers to the general manufacturing process - the production of objects by adding material - under which various production processes such as rapid prototyping, rapid tooling or mass customization can be subsumed.

Additive manufacturing offers significant benefits to a wide range of industries, whether it's the ability for agile product customization, functional integration, or rapid and cost-effective spare parts procurement. EOS offers a variety of metals and polymers to suit each application.
Read more about the various processes and materials that EOS has continuously developed and what advantages they offer your company.

At EOS, we work with the additive manufacturing technology of powder bed fusion. In this process, a CAD model is created, virtually cut into thin slices and converted into a file that the 3D printer can read. For the printing process, a thin layer of the desired powder material is applied to a building platform. A powerful laser beam then melts the powder in the exact locations specified by the computer model. A new layer of powder is applied and again fused with the underlying layer by laser. In this way, layer by layer, the finished product is created.

Additive manufacturing can offer your company a significant competitive advantage. On-demand spare parts production directly on site reduces inventory and supply chain constraints. Lightweight designs mean less material, less energy, and less costs. Customization and function integration enable a fast response to customer requirements. We are happy to advise you.

LEARN MORE

We have been using EOS technology for more than eight years and have always had positive experiences. When used correctly, the design freedom provides significant benefits that give our customers market advantages that are nearly unrivaled.

Hannes Kuhn | Managing Director | Kuhn-Stoff GmbH & Co KG 

Industrial 3D printing can be a cost-effective alternative to traditional manufacturing processes in many areas. Key cost factors include:

03_cost_reduction

Produce parts cost-efficiently, even in series production

34_flexible_production

Reduce the cost of producing and stocking spare parts by producing them locally on demand

58_time_savings

Accelerate product development and prototyping to gain a competitive advantage

16_knowhow

Completely new product development, beyond tooling or wax models

FACTS & EXAMPLES ON COST EFFICIENCY

The original field of application for additive manufacturing was primarily rapid prototyping, with which product development and market launch could be significantly accelerated. In the meantime, however, industrial 3D printing has become an essential part of series production. EOS is one of the pioneers of this development.

Additive manufacturing is opening up new opportunities in demanding industries such as medical, automotive, mobility and aerospace, as well as in mass markets such as lifestyle and consumer goods, industrial and manufacturing. Additive manufacturing offers numerous competitive advantages and creates sustainable foundations for the future. Here are some examples of EOS technology success stories.

Our extensive portfolio not only includes 3D printers, accessories and materials for plastic and metal parts. On top of that, we also support you in improving your skills with our free webinars.

-- loading ... --

Be inspired. Stay up to date.
Join our Monthly Newsletter Now!

3D printers EOS (Electro Optical Systems).

Industrial printers

Electro Optical Systems (EOS) is a German company considered one of the pioneers in the development of 3D technologies in general and additive manufacturing in particular. The brand was founded in 1989 and over almost 20 years of activity, the company has become a world leader in the production of SLS systems - selective laser sintering of metal powders used as a printing material on industrial EOS plants.

The SLS technology developed by the specialists of this brand is based on the use of a laser platform and a high power beam - today there are full-featured sintering systems for both powder metal alloy and plastic and even sand, which significantly expanded the range of applications for Electro Optical Systems printing machines.

The brand's industrial printers can solve various problems in such areas as the production of full-featured plastic parts for completing various products, the production of spare parts from thermoplastic materials, the sintering of polyamide materials, the production of parts and mold inserts from metal using tool and non-tool production methods.

The German company EOS (EOS) is considered the world leader in the field of 3D printing based on metal powder and plastic. By successfully applying the technology of laser sintering (SLS), using the equipment of this manufacturer, it is possible to obtain durable products that fully comply with the specified parameters. To guarantee high quality, the company supplies not only industrial 3D printers, but also all the necessary related materials for additive manufacturing.

Where and why you can use EOS 9 products0013

  • To create a small-scale or piece object of complex geometric shape. Using 3D scanning, you can set the parameters of the future product.
  • For the production of a prototype in the shortest possible time.
  • For the production of parts by laser melting of metal powders. The result is solid and smooth 3D objects that do not need further processing.

All EOS equipment is professional, and finds its customers among the research centers of industrial organizations working in the field of aviation and space, mechanical engineering, medicine, dentistry and jewelry.

3DMALL offers EOS metal powder based 3D printers: PRECIOUS M 080, EOS M 100, EOS M 290, EOS M 400. The numbers in the model name indicate the printing area.

The largest machine in this series is the EOS M 400. In just a few hours, it can create a large 3D model. The high speed of the press allows to use this device for mass production. Modular design allows you to improve the printer with the integration of new developments. To get a modern model for 3D modeling, you do not need to completely change the apparatus.

EOS PRECIOUS M 080 is designed for precious materials. It is very easy to make 3D prototyping with this model, because the machine works with a wide range of precious metals, is of high productivity and quality.

Any of the above EOS models can be ordered with delivery in Moscow and Russia. In stock and on order there are professional models and products for beginners from the world's leading manufacturers TEVO, Imprinta, Concept Laser, BQ, Mass Portal and many others. All of them work on modern technologies FDM, FFF, SLA, DLP, PolyJet. Delivery within Moscow time is free, within the Russian Federation it depends on the total amount of the order.

technologies, equipment, materials and new opportunities

There is no hotter trend in 3D printing today than metal. We will talk about metal printing at home, how it is done on an industrial scale, about technologies, applications, printers, processes, prices and materials. Over the past few years, 3D metal printing has been actively gaining popularity. And this is quite natural: each material offers a unique combination of practical and aesthetic qualities, can be suitable for a wide range of products, prototypes, miniatures, decorations, functional details and even kitchen utensils. The reason metal 3D printing has become so popular is because the printed objects can be mass-produced.

In fact, some of the printed parts are just as good (if not better) than those made by traditional methods. In traditional production, working with plastic and metal can be quite wasteful - there is a lot of waste, a lot of excess material is used. When an aircraft manufacturer makes metal parts, up to 90% of the material is simply cut off. 3D printed metal parts require less energy and waste is reduced to a minimum. It is also important that the final 3D printed product is up to 60% lighter than a traditional part. Billions of dollars could be saved in the aviation industry alone—mainly through weight savings and fuel savings. So, what do we need to know about metal 3D printing?

3D metal printing at home

If you want to make objects at home that will look like metal, your best bet is to look at metalized PLA filaments (Photo: colorFabb)

Where to start if you want to print metal objects at home? Given the extreme heat required for true metal 3D printing, a conventional FDM 3D printer will not be able to do this.

It is unlikely that in this decade it will be possible to print with liquid metal at home. Until 2020, you probably will not have a printer specialized for this purpose at home. But in a few years, as nanotechnology advances, we may see significant developments in new applications. This can be 3D printed with conductive silver, which will emit in much the same way as it does in 2D home printers. It will even be possible to mix different materials like plastic and metal in one object.

Materials for Metal 3D Printing at Home

Even though you can't actually print metal objects at home, you can turn to plastic filament that has metal powders added to it. Bestfilament, ColorFabb, ProtoPasta and TreeD Filaments offer interesting metal-PLA composite filaments. These filaments, containing a significant percentage of metal powders, remain pliable enough to be printed at low temperatures (200 to 300 Celsius) on virtually any 3D printer. At the same time, they contain enough metal to make the final object look, feel, and even weigh like metal. Iron-based filaments even rust under certain conditions.

But you can go further. Typically, up to 50 percent metal powder is added to 3D printing filament. Dutch company Formfutura says they have achieved 85 percent metal powder with 15 percent PLA. These filaments are called MetalFil Ancient Bronze and Metalfil Classic Copper. They can be printed even at "moderate" temperatures from 190 to 200 degrees Celsius.

Metal 3D Printing Filament Spools, in this case by SteelFill and CopperFill colorFabb (Steel and Bronze), Ancient Bronze by Formfutura

Here are the key points about metal printing at home

  • This results in a unique metal surface and appearance
  • Ideal for jewelry, figurines, household utensils, replicas
  • Durability
  • Objects are not flexible (structural dependent)
  • Objects do not dissolve
  • Not considered food safe
  • Typical print temperature: 195 - 220°C
  • Extremely low shrinkage on cooling
  • Table heating not required
  • Printing complexity is high, requires fine tuning of nozzle temperature, feed rate, post-processing

Preparing Your Home Printer for Metal 3D Printing

Since getting metal 3D prints is more difficult than usual, you may need to upgrade your 3D printer nozzle, especially if you are an entry-level printer. The metal filament wears it out quickly. There are hard-wearing hot-ends (like the E3D V6) that are themselves made of metal. They can withstand high temperatures and fit most printers. Be prepared for the fact that the nozzles will have to be changed frequently, because the metal filament is very abrasive.

You will also need to take care of the final finishing of the surface (cleaning, grinding, oiling, waxing or priming) so that the printed metal object shines as it should.

How much is metal filament for 3D printing?

And what about metal filament for 3D printing? - you ask. Here are some examples:

  • A 500-gram BFSteel and BFBronse coil from Bestfilament costs 1600–1800 ₽
  • ColorFabb's 750 gram Bronzefill spool is $56.36
  • ColorFabb's 750 gram Copperfill spool is $56.36
  • Protopasta's Polishable Stainless Steel PLA Composite is $56 for 56 grams
  • Protopasta's Rustable Magnetic Iron PLA Composite is $34.99 for 500 grams

Industrial Metal 3D Printing

But what if you want better results or even full metal 3D printing? Should a real "metal" 3D printer be purchased for business needs? We wouldn't recommend it - unless you're going to be doing it every day. A professional metal 3D printer is expensive: EOS or Stratasys devices will cost you 100-500 thousand dollars. In addition, the costs will be even greater, since you will have to hire an operator, a worker to maintain the machine, as well as to finalize the printouts (polishing, for example). Just a note: In 2016, an affordable metal 3D printer didn't exist.

Reducing Metal 3D Printing Costs

If you are not going to open a metal 3D printing business, but still need a professionally 3D printed metal part, it is better to contact the appropriate company that provides such services. 3D printing services like Shapeways, Sculpteo and iMaterialise offer direct metal printing. They currently work with the following metal materials in 3D printing:

  • aluminum
  • steel
  • brass
  • copper
  • bronze
  • sterling silver
  • gold
  • platinum
  • titanium

If you are a jeweler, you can also order wax models for casting in precious metals. If we talk about wax models, then in most cases it is they (with subsequent melting) that are used when printing with metals (including gold and silver). Not all orders are carried out directly by these firms. They usually turn to other metal 3D printing companies to complete the order. However, the number of such services around the world is growing rapidly. In addition, metal 3D printing techniques are becoming more and more common in companies that offer such services.

The reason big companies love 3D printing so much is that it can be used to build fully automated lines that produce "topologically optimized" parts. This means that it is possible to fine-tune the raw materials and make the components thicker only if they must withstand heavy loads. In general, the mass of parts is significantly reduced, while their structural integrity is preserved. And this is not the only advantage of this technology. In some cases, the product turns out to be significantly cheaper and affordable for almost everyone.

Please note that metal 3D printing requires special CAD programs for modeling. It is worth paying attention to the recommendations of Shapeways - 3D printing metal guidelines. To delve further into the topic, check out Statasys’ information on related 3D printers and the nuances of metal 3D printing.

Here are some examples of the Benchy test model price for metal 3D printing:

  • Metal plastic: $22.44 (former alumide, PLA with aluminum)
  • Stainless steel: $83.75 (plated, polished)
  • Bronze: $299.91 (solid, polished)
  • Silver: $713.47 (solid, mirror polished)
  • Gold: $87.75 (gold plated, polished)
  • Gold: $12,540 (solid, 18K gold)
  • Platinum: $27,314 (solid, polished)

As you might expect, solid metal 3D printing prices are quite high.

Metal 3D printing. Applications

GE LEAP aircraft engine parts 3D printed at Avio Aero (Photo: GE)

There are several industries already using 3D printers to make everyday objects - you may not even know that these objects are printed.

  • The most common case is surgical and dental implants, which in this design are now considered the best option for patients. Reason: they can be tailored to individual needs.
  • Another industry is jewelry. Here, most manufacturers have abandoned resin 3D printing and wax casting, switching directly to metal 3D printing.
  • In addition, the aerospace industry is becoming more and more dependent on 3D printed metal objects. The Italian company Ge-AvioAero was the first to do all-metal 3D printing. It manufactures components for LEAP aircraft engines.
  • Another industry targeting metal 3D printing is the automotive industry. BMW, Audi, FCA are seriously considering this technology, not only for prototyping (3D printing has been used for this for quite some time), but also for making real parts.

Before metal 3D printing really takes off, however, there are some hurdles to overcome. And first of all, this is a high price, which cannot be made lower than during molding. Another problem is the low production speed.

3D metal printing.

Technologies

Most metal 3D printing processes start with an “atomized” powder

You can talk a lot about “metal” 3D printers, but their main problems remain the same as any other 3D – printers: software and hardware limitations, material optimization and multimateriality. We won't talk too much about the software, we'll just say that most of the major specialized software companies, such as Autodesk, SolidWorks and solidThinking, try to emphasize as much as possible the fact that as a result of the 3D metal printing process, you can get any shape you want.

In general, printed metal parts can be as strong as parts made by traditional processes. Parts made using DMLS technology have mechanical properties equivalent to casting. In addition, the porosity of objects made on a good "metal" 3D printer can reach 99.5%. In fact, manufacturer Stratasys claims that 3D printed metal parts perform above industry standards when tested for density.

3D printed metal can have different resolutions. At the highest resolution, layer thickness is 0.0008 - 0.0012" and X/Y resolution is 0.012 - 0.016". The minimum hole diameter is 0.035 - 0.045″. Let's, however, consider what metal 3D printing technologies are.

Metal 3D printing process #1:

Powder Bed Fusion

The metal 3D printing process that most of the relevant large companies use today is called Powder Bed Fusion. This name indicates that some source of energy (a laser or other energy beam) melts an "atomized" powder (i.e., a metal powder that is carefully ground into spherical particles), resulting in layers of a printed object.

There are eight major manufacturers of metal 3D printers in the world that already use this technology; while we are talking here, there are more and more such companies. Most of them are in Germany. Their technologies are called SLM (Selective Laser Melting - selective laser fusion) or DMLS (Direct Metal Laser Sintering - direct metal laser sintering).

Metal 3D printing process #2:

Binder Jetting

ExOne 3DP prints metal objects by binding the powder before firing it in a forge (photo: ExOne)

Another professional approach that also uses a powder base is called Binder Jetting. In this case, the layers are formed by gluing metal particles together and then sintering (or fusing) them in a high-temperature furnace, just like it is done with ceramics.

Another option, which is also similar to working with ceramics, is mixing metal powder into metal paste. A pneumatically extruded 3D printer (similar to a syringe bioprinter or an inexpensive food printer) forms 3D objects. When the required shape is reached, the object is sent to the furnace, i.e. in the mountains This approach is used in the Mini Metal Maker, apparently the only inexpensive "metal" 3D printer.

Metal 3D Printing Process #3:

Metal Deposition

It may seem that the only 3D printing process that is left out of working with metals is layer-by-layer deposition. This is not entirely true. Of course, on some desktop device, simply fusing metal threads onto the base will not work. However, very large steel companies can do it. And they do. There are two options for working with "metal surfacing".

One is called DED (Directed Energy Deposition) or Laser Cladding. Here, a laser beam is used to melt the metal powder, which is slowly released and solidifies as a layer, and the powder is fed using a robotic arm.

Usually the whole process takes place in a closed chamber, but in the MX3D project, conventional 3D printing techniques were used to build a full-sized bridge. Another option for metal fusion is called EBAM (Electron Beam Additive Manufacturing - additive electron beam technology), which is essentially soldering, in which a very powerful electron beam is used to melt 3 mm titanium wire, and the molten metal forms very large finished structures. As for this technology, its details are known so far only to the military.

Metal 3D printing. Metals

#1 3D Printing Metal: Titanium

Pure titanium (Ti64 or TiAl4V) is one of the most commonly used metals for 3D printing and is definitely one of the most versatile, strong and lightweight. Titanium is used both in the melting process in a preformed layer and in the process of spraying a binder and is used mainly in the medical industry (for the manufacture of personal prostheses), as well as in the aerospace industry, automotive and machine tools (for the manufacture of parts and prototypes). But there is one problem. Titanium is very reactive and explodes easily in powder form. Therefore, it is necessary that titanium 3D printing takes place in a vacuum or in an argon environment.

3D Printing Metal #2: Stainless Steel

Stainless steel is one of the cheapest 3D printing metals. At the same time, it is very durable and can be used in a wide range of manufacturing and even artistic and design applications. The type of steel alloy used also contains cobalt and nickel, is very difficult to break, and has a very high elasticity. Stainless steel is used almost exclusively in industry.

3D Printing Metal #3: Inconel

Inconel is a superalloy manufactured by Special Metals Corporation, its registered trademark. The alloy consists mainly of nickel and chromium and is very heat resistant. Therefore, it is used in the oil, chemical and aerospace (for black boxes) industries.

3D Printing Metal #4: Aluminum

Due to its lightness and versatility, aluminum is very popular in 3D printing. Aluminum alloys are commonly used.

3D Printing Metal #5: Cobalt-Chromium

This alloy has a very high specific strength (i.e. strength divided by density, which generally indicates the force required per unit area to break). It is most commonly used in the manufacture of turbines, dental and orthopedic implants, where 3D printing has become the dominant technology.

Metal for 3D printing №5. Copper and Bronze

With few exceptions, copper and bronze are used in wax melting processes, rarely in layer melting. The fact is that these metals are not very suitable for industry, they are more often used in the manufacture of works of art and crafts. ColorFabb offers both metals as the basis for a special metal filament.

Metal for 3D printing №6. Iron

Iron, incl. magnetic, also mainly used as an additive to PLA-based filaments, which are produced, for example, by ProtoPasta and TreeD.

Metal for 3D printing №7. Gold, Silver, and Other Precious Metals

Most preformed layer companies can 3D print precious metals such as gold, silver, and platinum. Here, along with the preservation of the aesthetic properties of materials, it is important to achieve optimization of work with expensive starting powder. Precious metal 3D printing is required for jewelry, medical applications and electronics.

Metal 3D printing. Printers

Do not even hesitate - the purchase of a metal 3D printer will not pass without a trace on your budget. It will cost at least 100-250 thousand dollars. Here is a list of a variety of "metal" printers, some of which can be found in firms providing 3D printing services.

Metal 3D Printer #1:

Sciaky EBAM 300 Metal Filament Printing

If you need to print really large metal structures, Sciaky's EBAM technology is your best bet. By order, the device can be built in almost any size. This technique is used mainly in the aerospace industry and the military. The largest of Sciaky's serial printers is the EBAM 300. It prints objects in a volume of 5791 × 1219 × 1219 mm.

The company claims the EBAM 300 is also one of the fastest industrial 3D printers on the market. A three-meter-sized titanium part for an aircraft is printed on it in 48 hours, while the material consumption is about 7 kg per hour. In general, forged parts that usually take 6-12 months to complete can be made in 2 days with this 3D printer.

Sciaky's unique technology uses a high energy electron beam that melts a 3mm titanium rod at a typical melting rate of 3 to 9 kg per hour.

Metal 3D Printer #2:

Fabrisonic UAM - Ultrasonic 3D Printing

Another way to print large metal parts is UAM (Ultrasound Additive Manufacturing Technology) from Fabrisonic. The devices of this company are three-axis CNC cutters, to which welding heads are added for the additivity of the process. The metal layers are first cut and then ultrasonically welded. The largest Fabrisonic 7200 printer operates in a volume of 2 x 2 x 1.5 m.

#3 Metal 3D Printer:

Concept Laser XLine 1000 - Metal Powder 3D Printing

The largest metal powder 3D printer on the market is the Concept Laser XLine with a volume of 1000. modeling - 630 × 400 × 500 mm, and itself the size of a house.

Its German company, one of the main suppliers of 3D printers for aerospace giants like Airbus, recently introduced a new device, the Xline 2000.

This equipment uses two lasers and the working volume is 800 × 400 × 500 mm. Uses LaserCUSING laser technology (a variant of selective laser fusion) from Concept Laser, which allows you to print alloys of steel, aluminum, nickel, titanium, precious metals and even some pure substances (titanium and stainless steel).

Metal 3D printing. Services

There are more than 100 companies worldwide offering metal 3D printing services. We list the most popular services for consumer needs.

#1 Metal 3D Printing Service: Shapeways

The world's most popular 3D printing service, Shapeways offers two types of services. As a consumer, you can choose from a wide range of professionally designed objects, customize them, and then have them printed to your specifications. Like other 3D printing services, Shapeways offers a platform for designers to sell and print their work. Shapeways is also a good place for rapid prototyping: customers benefit from industrial-grade printers (EOS, 3D Systems) and personal technical support.

3D printing metals: aluminium, brass, bronze, gold, platinum, precious metal plating, silver, steel. There are also wax molds for jewelry purposes.

Metal 3D Printing Service #2: Sculpteo

Like Shapeways and i.materialise, Sculpteo is an online 3D printing service that allows anyone to upload 3D models and send them for fabrication in a wide range of materials. Like its competitors, Sculpteo provides a platform for hobbyists and professionals to showcase and sell their designs. The stable of Sculpteo printers includes highly professional machines from 3D Systems, EOS, Stratasys and ZCorp. Extensive technical documentation will help identify design flaws and select the right material for the project.

3D printing metals: alumide (plastic with aluminum particles), brass, silver.

Metal 3D Printing Service #3: iMaterialise

Materialise is a company that works with industrial clients to prototype 3D printed products. For casual users and designers, Materialize offers an online 3D printing service called i.materialise. As with Shapeways, this service allows anyone to upload their 3D designs and print them out. Once an object has been uploaded and successfully printed, a designer can list it for sale either in the gallery of the i.materalise online store or by embedding some code into their site.

3D printing metals: alumide (plastic with aluminum powder), brass, bronze, copper, gold, silver, steel, titanium.

Metal 3D Printing Service #4: 3D Hubs

Through 3D Hubs, you can search for individuals and businesses that offer 3D printing services in your area, upload STL files (which are immediately assessed for defects), and contact directly with service providers to get the job done.


Learn more