Buy aluminum 3d printer


Best metal 3D printers in 2022: comprehensive overview

What is the best metal 3D printer in 2022?

Over the past few years, there has been a surge in both supply and demand for metal 3D printers.

Manufacturers are launching metal additive manufacturing machines that are faster, easier to use, and more powerful with an increasing number of compatible metals.

Many businesses are adopting these 3D metal printing technologies to produce cost-effective metal parts and prototypes, benefiting as well from increased freedom of design linked to additive manufacturing. They are suitable for a variety of industries such as aerospace, automotive, health, engineering, and more.

Although metal 3D printer prices have been slowly and slightly decreasing, these machines are still relatively expensive acquisitions, mostly ranging from $80K to almost $1M.

With our metal 3D printer selection, we aim to provide a comprehensive overview of what’s available from well-established and distributed brands, at various price points, and with different metal 3D printing technologies.

The best metal 3D printers in 2022

BrandProductBuild sizeCountryPrice

Approximate starting prices based on supplier-provided information and public data. Prices may vary by region, over time and do not include additional products or services (taxes, shipping, accessories, training, installation, …).

MarkforgedMetal X (Gen 2)300 × 220 × 180 mm11.81 × 8.66 × 7.09 inUnited States$ 99,500125 000 €88,260 £14,831,072 ¥Quote
Desktop MetalStudio 2300 × 200 × 200 mm11.81 × 7.87 × 7.87 in$ 110,000110 000 €97,574 £16,396,160 ¥Quote
Xact MetalXM200C127 × 127 × 127 mm5 × 5 × 5 inUnited States$ 110,000100 000 €97,574 £16,396,160 ¥Quote
Pollen AMPam Series MC⌀ 300 x 300 mm$ 140,000135 000 €124,186 £20,867,840 ¥Quote
TRUMPFTruPrint 1000100 × 100 × 100 mm3. 94 × 3.94 × 3.94 in$ 170,000170 000 €150,797 £25,339,520 ¥Quote
3D Systems

This brand is a certified partner from our network.

DMP Flex 100100 × 100 × 80 mm3.94 × 3.94 × 3.15 in$ 245,000245 000 €217,325 £36,518,720 ¥Quote
EOS EOS M 100100 × 100 × 95 mm3.94 × 3.94 × 3.74 inGermany$ 350,000350 000 €310,464 £52,169,600 ¥Quote
XJetCarmel 700M501 × 140 × 200 mm19.72 × 5.51 × 7.87 in$ 599,000599 000 €531,337 £89,284,544 ¥Quote
Desktop MetalProduction System P-1200 × 100 × 40 mm7.87 × 3.94 × 1.57 inUnited States upon requestQuote
Digital MetalDM P2500203 × 180 × 69 mm7.99 × 7.09 × 2.72 in upon requestQuote
FormalloyL-Series1000 × 1000 × 1000 mm39. 37 × 39.37 × 39.37 inUnited States upon requestQuote
GE AdditiveArcam EBM Spectra L350 × 350 × 430 mm13.78 × 13.78 × 16.93 inUnited States upon requestQuote
GE AdditiveM2 Series 5250 × 250 × 350 mm9.84 × 9.84 × 13.78 in upon requestQuote
RenishawRenAM 500E245 × 245 × 335 mm9.65 × 9.65 × 13.19 in upon requestQuote
SLM Solutions SLM 125125 × 125 × 75 mm4.92 × 4.92 × 2.95 inGermany upon requestQuote
SPEE3DLIGHTSPEE3D300 × 300 × 300 mm11.81 × 11.81 × 11.81 in upon requestQuote
TRIDITIVEAMCELL⌀ 300 x 350 mmSpain upon requestQuote
Velo3DSapphire⌀ 315 x 1000 mm upon requestQuote

Expand to see more specs

Technology: The technologies listed above are main categories of metal 3D printing technologies. Most manufacturers have their own branded technologies, which fall into the main categories that are listed in the table.

The products in the table are ranked by price (low to high).

BrandProductTechnologyBuild sizeCountryPrice

Approximate starting prices based on supplier-provided information and public data. Prices may vary by region, over time and do not include additional products or services (taxes, shipping, accessories, training, installation, …).

MarkforgedMetal X (Gen 2)Extrusion300 × 220 × 180 mm11.81 × 8.66 × 7.09 inUnited States$ 99,500125 000 €88,260 £14,831,072 ¥Get a quote
Desktop MetalStudio 2Extrusion300 × 200 × 200 mm11.81 × 7.87 × 7.87 in$ 110,000110 000 €97,574 £16,396,160 ¥Get a quote
Xact MetalXM200CSLM/DMLS127 × 127 × 127 mm5 × 5 × 5 inUnited States$ 110,000100 000 €97,574 £16,396,160 ¥Get a quote
Pollen AMPam Series MCExtrusion⌀ 300 x 300 mm$ 140,000135 000 €124,186 £20,867,840 ¥Get a quote
TRUMPFTruPrint 1000SLM/DMLS100 × 100 × 100 mm3. 94 × 3.94 × 3.94 in$ 170,000170 000 €150,797 £25,339,520 ¥Get a quote
3D Systems

This brand is a certified partner from our network.

DMP Flex 100SLM/DMLS100 × 100 × 80 mm3.94 × 3.94 × 3.15 in$ 245,000245 000 €217,325 £36,518,720 ¥Get a quote
EOS EOS M 100SLM/DMLS100 × 100 × 95 mm3.94 × 3.94 × 3.74 inGermany$ 350,000350 000 €310,464 £52,169,600 ¥Get a quote
XJetCarmel 700MMaterial Jetting501 × 140 × 200 mm19.72 × 5.51 × 7.87 in$ 599,000599 000 €531,337 £89,284,544 ¥Get a quote
Desktop MetalProduction System P-1Binder Jetting200 × 100 × 40 mm7.87 × 3.94 × 1.57 inUnited States upon requestGet a quote
Digital MetalDM P2500Material Jetting203 × 180 × 69 mm7. 99 × 7.09 × 2.72 in upon requestGet a quote
FormalloyL-SeriesDirected Energy Deposition1000 × 1000 × 1000 mm39.37 × 39.37 × 39.37 inUnited States upon requestGet a quote
GE AdditiveArcam EBM Spectra LEBM350 × 350 × 430 mm13.78 × 13.78 × 16.93 inUnited States upon requestGet a quote
GE AdditiveM2 Series 5SLM/DMLS250 × 250 × 350 mm9.84 × 9.84 × 13.78 in upon requestGet a quote
RenishawRenAM 500ESLM/DMLS245 × 245 × 335 mm9.65 × 9.65 × 13.19 in upon requestGet a quote
SLM Solutions SLM 125SLM/DMLS125 × 125 × 75 mm4.92 × 4.92 × 2.95 inGermany upon requestGet a quote
SPEE3DLIGHTSPEE3DMaterial Jetting300 × 300 × 300 mm11. 81 × 11.81 × 11.81 in upon requestGet a quote
TRIDITIVEAMCELLExtrusion⌀ 300 x 350 mmSpain upon requestGet a quote
Velo3DSapphireSLM/DMLS⌀ 315 x 1000 mm upon requestGet a quote

Main types of metal 3D printing technologies

The four main types of 3D metal printing technologies are:

  • Metal Powder Bed Fusion 3D printing (SLS, SLM, DMP)
  • Directed Energy Deposition (DED)
  • Metal filament extrusion (FFF, FDM)
  • Material Jetting and Binder Jetting

There are also some resin-based metal 3D printers, and metal sheet lamination 3D printers, but they are harder to come by.

It is not uncommon to see different acronyms and names for similar technologies. Each brand markets their own, proprietary methods. Some metal 3D printer companies even use a mix of different technologies.

A breakdown of the metal 3D printer market by technology types. Source: Aniwaa database (2019)

Here we provide a deeper look into each 3D metal printer from our list. They are grouped together according to their main 3D printing technology type (powder bed fusion, material/binder jetting, extrusion, and DED).

Extrusion-based metal 3D printer selection (FFF, FDM)

Extrusion consists of heating the material (filament) and pushing it through a nozzle. In the metal 3D printing case, the filament is generally made up of metal particles mixed into a binding agent.

After the part is 3D printed, the result is a raw object or part; it must go through several post-processing steps– such as debinding and sintering– to attain its final form.

Most extrusion-based metal 3D printing processes include these steps. The above illustration is sourced from Desktop Metal (Bound Metal Deposition™ process).

Desktop Metal’s Studio is an office-friendly, end-to-end metal 3D printing system. Aside from the printer, the Studio line also includes a debinding machine and a furnace for sintering. Indeed, parts 3D printed with this Desktop Metal 3D printer are “green”.

The Studio printer, with its proprietary Bound Metal Deposition technology, uses filament that is filled with small, metal rods. During debinding, the binding material (wax and polymer binders) is dissolved thanks to a proprietary liquid substance. The part is left porous, and must go in the furnace for its particles to fuse and densify the part.

Contact manufacturer Get a quote Add to comparison

MarkForged is specialized in continuous fiber 3D printing, but also offers metal 3D printing with their Metal X system, featuring Atomic Diffusion Additive Manufacturing (ADAM) technology.

This MarkForged 3D printer extrudes metal-filled plastic filament to form the part, which must then be washed with a special debinding fluid (Wash-1 Station) and then sintered in a furnace (Sinter-1 or Sinter-2 MarkForged machines).

Available metal 3D printer filament includes various Steels (h23, A2, D2 tool steels, 316L stainless steel) as well as Inconel, Copper, and Titanium.

Contact manufacturer Get a quote Add to comparison

Canada-based Rapidia offers an interesting and unique way to 3D print metal. They use a water-based metal paste, which eliminates the need for chemical debinding. The water evaporates during the 3D printing process, so the part only needs to go through the furnace in order to completely solidify and attain its final form.

Confirmed, available paste types include several Stainless Steels, Inconel, and a few ceramics. Copper, Tungsten Chrome Carbide, Titanium, and various other metals are in development.

The ExOne Metal Designlab, designed in collaboration with Rapidia, works on the same basis.

Contact manufacturer Get a quote Add to comparison

Pollen AM is a French manufacturer that has been producing pellet 3D printers since 2013. Their Pam Series MC is a delta-style 3D printer (cylindrical build volume) that can print metals, ceramics, and thermoplastics.

It extrudes injection-molding-grade pellets instead of metal 3D printer filament, driving material costs down significantly. Pollen AM names their technology “Pellet Additive Manufacturing”.

Contact manufacturer Get a quote Add to comparison

This machine was built with one goal: enable mass production 3D printing of metal parts 24/7. The AMCELL is fully automated, with auto feedstock control, environment control (temperatures, humidity, air filtering), and an ejection system fitted with a conveyor belt.

Rather than providing one, big build volume, the TRIDITIVE AMCELL boasts eight delta-style ø 220 x 330 mm build areas. Its eight “robots” deposit metal-infused filament to create 3D metal parts. TRIDITIVE states that resulting parts are similar to ones produced with traditional MIM (Metal Injection Molding) methods.

TRIDITIVE’s technology is called Automated Multimaterial Deposition®.

Contact manufacturer Get a quote Add to comparison

Metal powder bed fusion 3D printer selection (SLS, SLM, DMP, and more)

At the moment, the most commonly used metal additive manufacturing technology is powder bed fusion 3D printing. Simply put, the 3D printer creates objects out of a bed of powdered metal by using a powerful laser.

3D Systems, a historical actor on many 3D printing fronts, presents the DMP FLEX 100 as a fast, precise, and affordable metal 3D printer. It offers impressive part repeatability and surface finishes, of around 20 μm and 5 Ra μm respectively. DMP stands for Direct Metal Printing.

The printer comes with 3D Systems’ software 3DXpert All-in-One Software Solution for Metal Additive manufacturing. Their LaserForm metal 3D powders are certified.

Contact manufacturer Get a quote Add to comparison

This compact metal 3D printer is destined for the production of small parts in small quantities. Its material portfolio is especially interesting for medical use cases, namely dental crowns and bridges. EOS certified metal powders include Cobalt-Chrome, Stainless Steel, and Titanium.

The EOS M100’s laser spot is precise enough to provide a great level of detail, backed by 200 W of powder.

Contact manufacturer Get a quote Add to comparison

Originally a Swedish company, Arcam was acquired by GE Additive a few years ago. The Arcam EBM Spectra L is up to 20% faster than its predecessors and is able to reduce part costs by around 10%.

This metal 3D printer is dedicated to Titanium 3D printing, but Copper is in the pipeline as well. Its laser beam power is equal to 4.5 kW, partly explaining the printer’s high melting capacity and productivity. Common applications for this printer include orthopedic implants and parts for the aerospace industry.

Contact manufacturer Get a quote Add to comparison

Concept Laser is the company behind GE Additive’s M2 Series 5. It offers an easy, optimized workflow, with a separate processing chamber and handling area that is integrated into the system. This closed-loop material system ensures a safe environment that is free of powder for the operator.

The M2 metal additive manufacturing solution is compatible with a range of metals, from Stainless Steels to Aluminum, Nickel, Titanium, and Cobalt-Chrome.

Contact manufacturer Get a quote Add to comparison

The RenAM 500E is Renishaw’s entry-level metal additive manufacturing solution. It offers a relatively large build volume and powder can be handled via a dedicated glove box to avoid powder from getting free.

This system is also equipped with an oxygen sensor and a proprietary emission-filtering system branded SafeChange™.

Contact manufacturer Get a quote Add to comparison

Officially established in 2006, SLM Solutions has been a historical player in the powder bed fusion industry for many years. The SLM 125 boasts an open software architecture that allows users to tweak the system’s parameters according to specific use cases, materials, and general needs.

Options such as laser monitoring and melt pool monitoring are available for businesses that require full transparency and control over their production series.

Contact manufacturer Get a quote Add to comparison

The TruPrint 1000 is TRUMPF’s most compact metal 3D printing system, with a 100mm-tall cylindrical build volume. It is suitable for the production of small parts and prototypes, and even small production series when equipped with the multilaser option that increases the printer’s speed.

This metal 3D printer can be operated remotely via a tablet application, which also gives access to its onboard camera stream.

Contact manufacturer Get a quote Add to comparison

The Velo3D Sapphire is a high-volume metal 3D printer from the US designed for production series. This metal 3D printer features Velo3D’s Intelligent Fusion technology to allow for complex geometries and 0° overhangs.

The system is also equipped with a range of metrology sensors that measure each and every layer that is 3D printed.

Contact manufacturer Get a quote Add to comparison

The XM200C is Xact Metal’s entry-level metal 3D printing solution. It is suitable for both research purposes and small production series. The XM200C benefits from a proprietary Xact Core gantry system for precise movements with a fusing speed of up to 500 mm/s.

Xact Metal offers their own materials, branded Xact Powder, including various Stainless Steels, Super Alloys, Tooling Steels, Aluminum, Titanium, Bronze, and Copper. Advanced users are able to use their own metal powders if needed.

Contact manufacturer Get a quote Add to comparison

Metal material jetting and binder jetting 3D printers

Material jetting 3D printers are equipped with various inkjet printheads (somewhat similar to 2D printing) that jet material onto a surface. The material then hardens, and another layer of “metal ink” is jetted on top.

Binder jetting is a similar process, but it is a binding agent that is jetted atop a layer of powder.

The Production System by Desktop Metal was designed for mass production. It is advertised by Desktop Metal as being a fast, cost-effective metal additive manufacturing solution, with a cost per part up to 20 times lower than with other metal 3D printing systems.

This Desktop Metal 3D printer is equipped with over 16,000 nozzles that are mounted onto a “print bar” that recoats the build plate with powder at the same time, hence explaining the technology’s name: Single Pass Jetting™.

Contact manufacturer Get a quote Add to comparison

Digital Metal, a Höganäs Group company, creates incredibly detailed metal parts with their DM P2500 system. It is able to print 3D metal parts with an accuracy as high as 0.001mm (1µ), and with a medical-grade surface quality of around 0.006mm (6µ).

Another interesting feat to point out is that almost 100% of leftover powder can be recycled for future prints. This metal AM machine is able to churn out serial production series efficiently and reliably; one of the company’s first DM P2500 printers has been running 24/7 since 2013, according to Digital Metal.

The Digital Metal DM P2500 is a certified metal 3D printer (CE and UL) that is compatible with certified metal materials (ISO 22068).

Contact manufacturer Get a quote Add to comparison

Australian manufacturer SPEE3D has developed an impressively fast metal 3D printing technology called Supersonic Deposition. The technology is based on metal cold spray, using compressed air to “jet” metal powder through a nozzle at high speeds.

This enables the LightSPEE3D to 3D print at up to 100 grams per minute and with a range of metals including copper.

Contact manufacturer Get a quote Add to comparison

XJet developed an impressive, proprietary jetting technology they call NanoParticle Jetting™. This inkjet method disperses millions of tiny droplets that contain nanoparticles of solid metal. The liquid material comes in cartridges that are easy to insert into the printer.

After being printed, the metal parts must go through support removal and sintering processes to attain their final form.

Contact manufacturer Get a quote Add to comparison

DED: Directed Energy Deposition metal additive manufacturing systems

Directed Energy Deposition (DED) is comparable to filament extrusion. The metal material is pushed through a special nozzle, like with FFF/FDM, but a powerful laser beam solidifies the material at its deposition point.

Formalloy produces a range of metal DED 3D printers with up to 5 axes of motion. They can be used to produce metal parts but also to repair or clad existing parts.

Different laser wavelengths are available, as well as different build volumes: 200 x 200 x 200 mm, 500 x 500 x 500 mm, and 1000 x 1000 x 1000 mm. Metal 3D printers from Formalloy can be customized depending on company requirements.

Contact manufacturer Get a quote Add to comparison

Alternative metal 3D printers and special mentions

Hybrid metal manufacturing systems

Some manufacturers are specialized in hybrid metal manufacturing systems. They combine both subtractive and additive manufacturing methods, often with robotic arms that are able to move on more than three axes.

Some of the biggest actors on the hybrid metal AM system market are:

  • Gefertec (Germany)
  • DMG Mori (Germany)
  • Matsuura (Japan)
  • Sodick (United States)

XXL-sized metal 3D printers for industrial production

For those that require very large metal parts, there are several huge, industrial machines that offer gigantic build volumes for industrial production. To name a few:

  • Sciaky EBAM 300
  • Titomic TKF1000
  • ADC Aeroswift
  • ADIRA AddCreator
  • Fabrisonic SonicLayer 4000
  • ExOne X1 160PRO
  • InssTek MX-600
  • BeAM Modulo 400
  • Optomec Lens CS 600
  • Additive Industries MetalFAB1

Metal 3D printers from China

There has recently been a lot of growth in the metal 3D printer market in Asia, and more specifically in China. Some Chinese brands have been upping their game in that respect, providing industrial-grade metal 3D printing options:

  • Farsoon
  • ZRapid Tech
  • Shining 3D
  • Wiiboox

However, we feel that they are not yet playing in the same league as the 3D printers from our main selection, mostly due to a lack of distribution networks, after-sales service and training, and other factors which tend to matter when considering them together as a whole.

R&D metal 3D printers for labs

In certain cases, metal 3D printers are used for research purposes to develop and test new materials. There are a few machines that are specifically designed for this:

  • Open Additive PANDA-6”
  • Freemelt ONE
  • Sharebot metalONE

Pros and cons of metal 3D additive manufacturing

Benefits of 3D printing metal parts

  • On-demand production: Metal additive manufacturing offers more flexibility and control over the production line.
  • Complex designs made possible: With 3D printing technology, it is possible to create highly detailed and intricate parts that would have to be broken down into several pieces with traditional methods.
  • Waste reduction: Compared to CNC milling, for example, metal AM produces much less waste as it only consumes the material needed for a certain part. This is more true for extrusion-based methods than it is for powder-based methods, where it isn’t always possible to re-use 100% of unsintered or unbinded material.
  • Lighter parts: Whereas metal parts are usually completely solid infill-wise with other methods, 3D printing allows parts to be more or less hollow without undermining their strength and resistance.
  • Cost-effectiveness: All the above benefits of metal 3D printing can inherently reduce costs per part, although high metal 3D printer prices do represent a significant entry barrier. Reaching a positive return on investment can take a while depending on your throughput.

Limits of metal 3D printing

  • Metal 3D printing prices: Metal AM systems are still quite expensive, as are metal powders and metal filaments. There are hidden costs, too (e.g. energy consumption, learning curve, etc.).
  • Environmental constraints and safety precautions: Most metal 3D printers have a large footprint and require specific operating environments with controlled temperatures, hygrometry, and more.
  • Post-processing: In many cases it is necessary for parts to be post-processed, whether it’s debinding and sintering or finishing touches for surface quality.
  • Physical properties: It can be difficult to achieve the same physical properties that traditionally manufactured metal parts have. There are a number of factors (e.g. anisotropy) to take into account during the design process and file preparation before even trying to 3D print a certain part.

Metal 3D printing materials

Which metals can you 3D print?

A growing number of metals and metal alloys can be 3D printed. These are the main ones:

  • Aluminum
  • Titanium
  • Nickel, Inconel
  • Copper
  • Bronze
  • Cobalt, Cobalt-Chrome
  • Steels (tooling, maraging, stainless)
  • Precious metals (gold, silver, platinum)

Which metal 3D printing material formats are available?

Metal 3D printing material can be found in various formats, catering to different metal 3D printing methods. The most common are:

  • Powder
  • Wire
  • Filament

It is also possible to find metal 3D printing resin as well as metal sheets for lamination-based 3D printers.

Metal 3D printer price: how much does a metal 3D printer cost?

Industrial metal 3D printer prices generally range from about $30,000 to over one million dollars for the most premium, industrial-grade metal additive manufacturing systems.

Additional costs to consider are the materials for metal 3D printing, which can cost a few hundred USD/kg, as well as costs linked to post-processing (tools, time, etc.).

Applications for metal AM systems

There are thousands of possibilities and use cases for metal 3D printing in a wide range of industries. A few industries have been incrementally using metal AM:

  • Aerospace
  • Automotive
  • Medical

Whether it’s for tooling, replacement parts, or final products, many businesses can benefit from metal 3D printing.

However, metal additive manufacturing isn’t necessarily beneficial for every single metal part. Although some metal 3D printing systems have a relative capacity for serial production, it is generally cheaper to keep using traditional methods for simple parts.

For cases where complex geometries, rapid prototyping, and mass customization are required, metal AM is convenient and efficient.

Metal 3D printing services: order 3D metal parts online

For professionals with limited office space and human resources, low budgets, and/or few needs of custom parts and prototypes, metal 3D printing services can be an ideal solution.

These additive manufacturing service companies own a variety of high-quality 3D printers with different technologies, and their professionals are experts in 3D printing. It is possible to order metal 3D parts on-demand, without acquiring a 3D printer or having to buy a certain material for one-time use.

Here are some of the most trusted 3D printing service providers that offer metal printing services:

  • Sculpteo
  • Shapeways
  • Hubs (ex 3D Hubs)
  • Stratasys
  • i.materialise
  • Protolabs

Metal 3D printing technologies and acronyms

Many manufacturers develop proprietary variations of existing technologies and label them their own registered names:

  • Powder Bed Fusion (PBF): DMLS (Direct Metal Laser Sintering), DMP (Direct Metal Printing), LaserCUSING, LBM (Laser Beam Melting), LMF (Laser Metal Fusion), SLS (Selective Laser Sintering), SLM (Selective Laser Melting)
  • Directed Energy Deposition (DED): DMT (Direct Metal Tooling), EBAM (Electron Beam Additive Manufacturing), EBM (Electron Beam Melting), LENS (Laser Engineered Net Shaping), LMD (Laser Metal Deposition)
  • Metal Material Jetting (MJ) or Binder Jetting (BJ): Magnet-o-Jet, Nanoparticle Jetting, SPJ (Single Pass Jetting), Metal Jet
  • Metal filament extrusion/Fused Filament Fabrication (FFF): ADAM (Atomic Diffusion Additive Manufacturing), CEM (Composite Extrusion Modeling), FDM (Fused Deposition Modeling), FFD (Fused Feedstock Deposition), FMP (Filament Metal Printing), BMD (Bound Metal Deposition), MIM (Metal Injection Molding)
  • Lamination: SL (Sheet Lamination), UAM (Ultrasonic Additive Manufacturing)
  • Metal resin 3D printing: DLP (Digital Light Processing), FluidFM, SLA (Stereolithography)

Metal 3D printing FAQ

Is 3D printed metal strong?

Metal 3D printed parts can be as strong (or even stronger) as metal parts created with traditional manufacturing processes such as casting. The part’s strength will, however, depend on the metal AM method used and the conditions in which it is 3D printed.

When was 3D metal printing invented?

Metal 3D printing became possible in the 1990s with the development of Selective Laser Melting technology. However, 3D metal printing only started to gain traction and public interest from around 2010 onwards.

How does metal 3D printing work?

There are several ways to 3D print metal. Layers of metal filament can be deposited one after the other, producing a green part that must later go through debinding and sintering steps. It is also possible to fuse metal powder particles together with a laser, or with an inkjet printhead that deposits drops of binding material onto the powder.

3d Print Aluminum | Metal 3D printing

Aluminum’s material characteristics make it ideal for many applications in many industries, for example aerospace and automotive.

EOS’ aluminum family of powders encompasses the AlSi10Mg, AlF357 and Al2139 AM alloys which are typical aluminum-silicon casting alloys. These powders are designed and tested for use on EOS’ metal 3D printers.

All EOS aluminum powders are shipped with an inspection certificate (according to EN 10204, Type 3.1) showing the results of the extensive QA testing not only of the powder itself, but also of test parts built on a dedicated system with a dedicated process.

EOS also offers a wide range of validated processes for each of the above materials. These offer the optimal combination of parameters (e.g. laser power, layer thickness, etc.) in order to ensure that the properties of the 3D printed part are consistently achieved.

Parts printed using EOS Aluminum AlSi10Mg offer good strength, hardness and dynamic properties as well as good thermal properties and low weight.

Typical Part Properties
Chemical composition in compliance with AlSi10Mg
Ultimate Tensile Strength 460 MPa
Yield Strength 245 MPa
Elongation @ Break 5 %

EOS Aluminium AlSi10Mg Material Data Sheet

914,6 KB

Download

Source: Conflux | EOS

Conflux Heatexchanger built in aluminum

Parts printed using EOS Aluminum AlF357 offer a combination of low weight, corrosion resistance and high dynamic load bearing capacity.

Typical Part Properties
Chemical composition in compliance with AlSi7Mg0.6, SAE AMS 4289
Ultimate Tensile Strength 330 MPa
Yield Strength 260 MPa
Elongation @ Break 11 %

EOS Aluminium AlF357 Material Data Sheet for EOS M 290 and EOS M 400

770,4 KB

Download

EOS Coral Heatsink in Aluminum

EOS Aluminium Al2139 AM is a 2000-series high strength alloy specifically designed for AM. It demonstrates outstanding performance in elevated temperatures up to 200 °C. The fast and simple heat
treatment procedure enables an affordable part production.

Typical Part Properties
(T4 heat treated state)
Chemical composition modified from Aluminium Association Teal Sheet for Al2139
Ultimate Tensile Strength 520 MPa
Yield Strength 460 MPa
Elongation @ Break 4 %

EOS Aluminium Al2139 AM Material Data Sheet for EOS M 290

318,8 KB

Download

Source: AM Metals | EOS

Wheel Carrier with integrated cooled engine housing

High-precision aluminum 3D printing at Sprint 3D!

aluminum 3D printing is a relatively new technology in the production of high strength metal products. Using aluminum alloys, you can create almost any product - from home decor and souvenirs to parts of industrial equipment or even aircraft.

SPRINT3D is already using 3D printing technology with aluminum for its customers. We use the latest equipment - Renishaw AM400 (SLM) aluminum 3D printer that allows you to grow products of almost any complexity based on metal powders.

We invite you to learn more about aluminum 3D printing, features and benefits.



Why 3D printing with aluminum is a new step in production

First and foremost are the materials used. Not just powdered aluminum is used. The material itself is quite malleable. But when nanoparticles are mixed with raw materials, crystallization occurs, which greatly increases the strength of finished products and prevents the formation of cracks during their hardening.

For the first time, the technology has been successfully applied in the aerospace industry.

It was practically inaccessible to the general public. Commercial/Industrial Aluminum 3D Printer is a new phenomenon. But even today it solves the most difficult tasks:

  • Allows small-scale production of metal products. The main advantage is high geometric accuracy, which was previously unavailable.
  • Suitable for low volume production and prototype printing. For example, to check the ergonomics of the product and carry out the necessary checks.
  • This is the best choice for tool making. Complexity, dimensions, geometry - everything is individual.

We use the most suitable production material, aluminum alloy AlSi10Mg-0403. It contains aluminum alloyed with silicon (no more than 10%), magnesium, and other components in small quantities. Thanks to silicon, the alloy becomes much stronger than pure aluminum. In addition, an oxide layer is formed on the surface of the printed products, which has increased corrosion resistance. It can even be enhanced using chemical anodizing technology.

4 key benefits of

3D printing with aluminum

There are many more benefits, but we will focus on the main ones:

  1. Increased flexibility in design and production. For example, the technology allows the creation of complex internal channels, mesh structures and bionic elements. Previously, this required the serious work of specialists and the introduction of expensive technologies into production.
  2. Short design and production times. 3D printing with aluminum is much easier and faster than creating similar products using other methods. First of all, due to the maximum automation of the process.
  3. Reduced finished product weight. Similar blanks made using other technologies weigh more. This puts some restrictions in terms of operation and their implementation in various units, tools and mechanisms.
  4. Reduced financial costs in production. With the same budget and volume of material, it is possible to produce a numerically large batch of products and, in general, reduce costs by at least a few percent.

Existing mathematical models that have been used for 3D printing on other equipment can be quickly and inexpensively optimized for 3D printing with aluminum on new equipment. At all stages of production, product control is ensured. For this we use computed tomography. This allows you to eliminate even the slightest defects.



Our

AM400

AM400 aluminum 3D printer is a versatile printer that can work not only with the mentioned AlSi10Mg-0403, but also other metal powders. But we use it mainly in conjunction with aluminum powder materials. One of the key advantages of this printer is the ability to quickly change the printing system between different types of metal. This reduces production time and allows different materials to be processed on the same machine.

Main parameters of the model:

  • Working area: 25 cm × 25 cm x 30 cm.
  • The level of argon use is at least 60% lower than in analogues.

The printer is already widely used in the aerospace industry. The reason is the ability to reduce the weight of the product, while maintaining all its parameters and strength indicators. The AM400 allows you to create particularly complex parts. For example, with complex internal cooling circuits. Previously, this was not possible due to the use of outdated metal casting methods. They did not allow creating models of high complexity.

The AM400 aluminum 3D printer is ideal for small batch production. But if necessary, it can also be used for mass production.



Selective Laser Melting Technology and Features

The AM400 supports the SLM laser melting technique. This is one of the newest destinations used in the most demanding segments:

  • engineering sector;
  • space/aerospace;
  • production of spare parts and structural products.

3D printing with aluminum paired with SLM technology allows you to create functional metal products with increased construction accuracy. For example, you can implement complex systems of channels within the product for cooling.

Key features of the SLM:

  • The vacuum technology used saves 60 to 80% argon.
  • Preparation of equipment for production - no more than 15 minutes.
  • Focal spot - 70 microns. This gives an improved quality of model building in this class.
  • The powders used are practically not in contact with the atmosphere.
  • For R&D powders, the built-in small chamber can be used.
  • Renishaw branded encoders guarantee increased durability.

And this is only a small part of all the benefits.

Our offer

SPRINT3D prints metal parts, engine components, components of complex metal structures. We also carry out 3D printing with aluminum for the medical industry.

Contact our manager to discuss production possibilities, terms and main parameters of future products. We will provide convenient conditions, a comfortable price and standardized quality of 3D printing of all products. If necessary, we will offer alternative production options.

You can get advice, discuss the order and find out the price of production on the website through a special form or by phone number 8 (495) 740-51-70.

You may be interested in


Our company offers 3D aluminum printing using Selective Laser Melting technology. SLM technology allows you to create structural parts that are close in parameters to casting. Complex shapes are possible with internal structures that cannot be replicated by casting or milling.

We have a Concept Laser M2 Cusing machine for printing with AlSi10Mg powder alloy. This is a 3D printer for layer-by-layer printing with powder metals and alloys in a nitrogen or argon environment.

During the printing process, a thin layer of aluminum powder is applied to the platform, where it is fused by a laser along the outlines of the future part. The platform then lowers slightly and the process repeats. As a result, we get a strong anisotropic part, as close as possible in terms of characteristics to casting.

Aluminum printing examples

Aluminum 3D printing prices

Technology Equipment Region Layer, µm Accuracy, mm Materials Price (r/cm3)
SLM Concept Laser M2 250x250x280 20-80 +-0. 05 12X18H10T (stainless steel)
03Х17Н12М2
AlSi10Mg (aluminum)
500r/cm3
500r/cm3
400r/cm3
Manual post-processing Cleaning of support material, surface grinding and polishing, painting work 1500 rub/man-hour
3D modeling Create 3D models from drawings or templates 2500 rub/man-hour

SLM and DMLS aluminum printing technologies are used in completely different areas: from the creation of new parts for the aerospace industry, to the printing of broken parts for cars and other equipment. Unlike traditional manufacturing methods such as milling and casting, the selective layer-by-layer fusion process has much fewer restrictions on shapes, negative angles, cavities, and so on.

Why is powder metal printing so good? First of all - small-scale. For one medium or small part made of aluminum, casters and millers may simply not take it - the preparatory procedures are very expensive. Making molds for casting, as well as preparing and debugging a CNC program, require time and money. And one detail will be easily printed for you.

For 3D printing with aluminum, we use AlSi10Mg powder alloy - its composition is aluminum, about 10 percent silicon and magnesium. Lightweight and strong, this alloy is great for rapid prototyping and making new parts.

SLM printing with Al powder is widely used in the aerospace industry. Lightweight and durable parts with the ability to create internal cavities and cooling channels are indispensable for modern aircraft manufacturing. Also, this technology began to be used to create custom cooling radiators in electronics.

How is aluminum printed on a 3D printer? First, a thin first layer of powder is applied, with a thickness of 25-100 microns. Then the laser beam goes around the desired areas, fusing the powder to the metal. Then a layer of powder is applied again and the process is repeated. Of course, a lot of experience of the staff is necessary, the specialist must correctly locate the part and support in the specialized software. 3D printing parameters may also differ for different alloys and different powders with different grain sizes. And finally, post-processing in the form of tumbling or grinding may be required.

Why order from us? Our company has its own production, with its own 3D printers, including those for metal. This allows us to quickly fulfill your orders and keep prices low. Our employees have extensive experience in the field of additive technologies, which allows us to perform prototyping work as efficiently as possible.

Advantages of 3D printing with aluminum

The main advantages of powder printing with aluminum alloys.

Speed ​​

Printing an aluminum (silumin) part is much faster than making it with traditional metal casting and CNC milling.


Learn more