3D printer uses metal


The Metal X 3D Printing System

An accessible end-to-end metal 3D printing solution for functional metal parts, next-day.

Request a Quote

The Metal X System is an accessible way to fabricate complex metal parts in a wide variety of advanced metals.

Simple, Yet Powerful

The Metal X is one of the most intuitive metal 3D printers available today. Print a wide range of materials from stainless steels to copper with minimal training on a closed workflow. Scaling up capacity is easy; just add printers.

Safe and Affordable

The Metal X is designed to be safe to use and accessible for all fabricators. It costs several times less than DMLS metal 3D printing systems and requires no dedicated operator, no powder management system, and minimal PPE.

Quality Parts, Fast

The Metal X is purpose-built for consistent part quality and a seamless user experience. Markforged combines superb software, materials research, and an advanced motion system to deliver industrial-grade parts quickly and reliably.

Specs

From design to fully functional
metal parts in as few as 28 hours.

Physical Dimensions

Width 575 mm
Depth 467 mm
Height 1120 mm
Weight 75 kg / 165 lbs

Build Volume

Width 300 mm
Depth 220 mm
Height 180 mm

Printer primary Specs

Printing Process
Metal FFF
Z Layer Resolution
50 μm - 125 μm (Post-Sinter)
Printing Media
Bound Powder Filament
Internal Part Geometry
Closed Cell Infill (Triangular) or Solid Parts
Print Bed
Heated, Auto Leveling, Replaceable Print Sheets

Wash & Sinter

Wash-1

External Dimensions:
609 x 685 x 1,067 mm
Weight:
136 kg (300 lbs)
Washing Time:
12-72 hrs typical
Solvent:
Opteon SF-79
Working Volume:
356 x 254 x 203 mm

Sinter-2

External Dimensions:
1,200 x 700 x 1,500 mm
Weight:
350 kg (772 lbs)
Run Time:
17-31 hours
Sintering Volume:
18,356 cu cm
Peak Internal Temp. :
1,300° C / 2,372° F

Materials

Compatible Materials

Release Material
Ceramic — Becomes Powder During Sintering Process

Media (Spools)
Bound Powder Metal Filament

System Details

Metal X Printer

The Markforged Metal X is a new kind of metal printer. By printing metal powder bound in a plastic matrix, Markforged has eliminated many of the safety risks associated with traditional metal 3D printers. That means no loose powder, no lasers, and none of the traditional safety precautions. It’s safe to use in a shop environment with minimal facility upgrades.

In practice, the Metal X is essentially a very advanced FFF 3D printer. Featuring a precision machined gantry, a heated chamber and print bed, and advanced extrusion hardware, the Metal X is equipped to reliably print you durable parts. It is intentionally designed, with wear components and consumables — including print sheets, nozzles, and brushes — accessible and trivial to swap.

Wash-1

The Wash-1 is a solvent-based debinding system. It primarily uses Opteon SF-79, a high-performance fluid designed to offer superior cleaning power, higher efficiency, and safety in an environmentally sustainable way — Opteon SF-80 or Tergo Metal Cleaning Fluid can be substituted if needed.

The Wash-1 operates with simple ventilation and features an extremely simple user experience. It’s been tested and verified as a shop-safe system.

Sinter-2 and Sinter-1

The Markforged Sinter-2 and Sinter-1 are highly optimized tube furnaces used for sintering 3D printed metal parts. They provide leading edge sintering reliability and run times and are equipped with advanced safety features. The Sinter-2 is more advanced than the Sinter-1 — featuring a larger working volume, more precise temperature control, and a mechanical door interlock.

The Sinter-1 and Sinter-2 typically have run times between 26 and 31 hours. However, the Sinter-2 can process small parts in express mode, where it can sinter up to 250g of parts in just 17 hours.

Download Datasheet

Materials

From stainless steel to copper,
choose from a wide range of strong,
durable, and capable materials.

Desktop 3D Printers Designed for Professionals

Desktop 3D Printer Series

Professional desktop 3D printers built with the versatility to test design concepts and build strong end use parts. Our platform covers a wide range of applications - varying from flexible and elastic to strong and rigid.

Compare 3D Printers Talk to an Expert

Drive innovation. Right from your desktop.

Compare Our Desktop 3D Printer Models.

Onyx One™

Our core desktop printer for functional plastic parts with stunning surface finish.

Materials

Plastic


Onyx™

Specs

+320 x 132 x 154 mm build volume

+100 µm - 200 µm layer height

+Precision ground composite print bed

MSRP

$4,990

Talk to an Expert

Onyx Pro™

Our enhanced desktop printer for stunning prototypes, tools, and production parts.

Materials

Plastic


Onyx™

Precise PLA

Smooth TPU

Continuous Fiber


Fiberglass™

Specs

+320 x 132 x 154 mm build volume

+100 µm - 200 µm layer height

+Precision ground composite print bed

MSRP

$9,600

Talk to an Expert

Mark Two™

The best desktop printer for stunning prototypes, tools, high performance end-use parts, and replacement parts.

Materials

Plastic


Onyx™

Nylon White™

Precise PLA

Smooth TPU

Continuous Fiber


Continuous Carbon Fiber™

Aramid Fiber (Kevlar®)*

Fiberglass™

HSHT Fiberglass™

Specs

+320 x 132 x 154 mm build volume

+100 µm - 200 µm layer height

+Precision ground composite print bed

MSRP

$19,900

Talk to an Expert

Dupont™ and Kevlar® are trademarks and registered trademarks of E. I. du Pont de Nemours and Company

What can I build on a desktop 3D printer?

Micro carbon fiber filled nylon offers excellent heat resistance, surface finish, and chemical resistance

APPLICATIONS

  • Functional Protos
  • Production Covers
  • Fit checks
  • Job Aids

Learn more

Stiff, strong, and extremely light, carbon fiber reinforcement yields parts capable of replacing machined aluminum.

APPLICATIONS

  • Custom production
  • Bridge production
  • High performance end-use parts
  • High-strength tooling

Learn more

HSHT Fiberglass delivers the highest impact resistance and heat deflection temperature of our continuous fibers, and can be used for low-temp molds.

APPLICATIONS

  • Welding fixtures
  • Ruggedized enclosures
  • Low-temp molds
  • Forming tools

Learn more

Inexpensive and 11 times stiffer than ABS, this is the perfect entry level continuous fiber for 3D printing functional parts.

APPLICATIONS

  • Workholding tools
  • Functional Prototypes
  • Moderate strength end-use parts

Learn more

Extremely durable and extremely resistant to catastrophic damage, Kevlar is an excellent choice for harsh environments.

APPLICATIONS

  • Workholding tools
  • Ruggedized enclosures
  • Flexures

Learn more

Rubber-like material for high quality, flexible, impact-absorbent parts on demand.

APPLICATIONS

  • Seals and gaskets
  • Shock absorbers
  • Wheels and treads
  • Belts

Learn more

Colorful, cost-effective, and easy to print thermoplastic for design validation

APPLICATIONS

  • Concept models
  • Fit Checks
  • Color-coded indicators

Learn more

Unmatched versatility

Our Desktop Series printers unlock production-grade performance and affordable prototypes, all on the same platform. Our most popular printing plastic, Onyx™, gives you a great start in material properties with excellent surface finish. Our selection of continuous fibers take our parts far beyond the mechanical and thermal properties of everyday FFF printing plastics, Smooth TPU 95A provides an efficient way to make high quality flexible parts in low-to-medium volumes, while Precise PLA delivers effective, reliable prototypes at an affordable price. No matter what properties you’re looking for, our desktop 3D printers have the right material for the job.

How does CFR 3D printing work?

Talk with a
Desktop expert

Let us put together an additive manufacturing solution to suit your needs.

technologies, equipment, materials and new opportunities

There is no hotter trend in 3D printing today than metal. We will talk about metal printing at home, how it is done on an industrial scale, about technologies, applications, printers, processes, prices and materials. Over the past few years, 3D metal printing has been actively gaining popularity. And this is quite natural: each material offers a unique combination of practical and aesthetic qualities, can be suitable for a wide range of products, prototypes, miniatures, decorations, functional details and even kitchen utensils. The reason metal 3D printing has become so popular is because the printed objects can be mass-produced.

In fact, some of the printed parts are just as good (if not better) than those made by traditional methods. In traditional production, working with plastic and metal can be quite wasteful - there is a lot of waste, a lot of excess material is used. When an aircraft manufacturer makes metal parts, up to 90% of the material is simply cut off. 3D printed metal parts require less energy and waste is reduced to a minimum. It is also important that the final 3D printed product is up to 60% lighter than a traditional part. Billions of dollars could be saved in the aviation industry alone—mainly through weight savings and fuel savings. So, what do we need to know about metal 3D printing?

3D printing with metal at home

If you want to make objects at home that will look like metal, your best bet is to look at metalized PLA filaments (Photo: colorFabb)

Where to start if you want to print metal objects at home? Given the extreme heat required for true metal 3D printing, a conventional FDM 3D printer will not be able to do this.

It is unlikely that in this decade it will be possible to print with liquid metal at home. Until 2020, you probably will not have a printer specialized for this purpose at home. But in a few years, as nanotechnology advances, we may see significant developments in new applications. This can be 3D printed with conductive silver, which will emit in much the same way as it does in 2D home printers. It will even be possible to mix different materials like plastic and metal in one object.

Materials for Metal 3D Printing at Home

Even though you can't print actual metal objects at home, you can turn to plastic filament that has metal powders added to it. Bestfilament, ColorFabb, ProtoPasta and TreeD Filaments offer interesting metal-PLA composite filaments. These filaments, containing a significant percentage of metal powders, remain pliable enough to be printed at low temperatures (200 to 300 Celsius) on virtually any 3D printer. At the same time, they contain enough metal to make the final object look, feel, and even weigh like metal. Iron-based filaments even rust under certain conditions.

But you can go further. Typically, up to 50 percent metal powder is added to 3D printing filament. Dutch company Formfutura says they have achieved 85 percent metal powder with 15 percent PLA. These filaments are called MetalFil Ancient Bronze and Metalfil Classic Copper. They can be printed even at "moderate" temperatures from 190 to 200 degrees Celsius.

Metal 3D Printing Filament Spools, in this case by SteelFill and CopperFill colorFabb (Steel and Bronze), Ancient Bronze by Formfutura

Here are the key points about metal printing at home

  • Get a unique metal surface and look
  • Ideal for jewelry, figurines, household utensils, replicas
  • Durability
  • Objects are not flexible (structural dependent)
  • Objects do not dissolve
  • Not considered food safe
  • Typical print temperature: 195 - 220°C
  • Extremely low shrinkage on cooling
  • Table heating not required
  • Printing complexity is high, requires fine tuning of nozzle temperature, feed rate, post-processing

Preparing Your Home Printer for Metal 3D Printing

Since getting metal 3D prints is more difficult than usual, you may need to upgrade your 3D printer nozzle, especially if you are an entry-level printer. The metal filament wears it out quickly. There are hard-wearing hot-ends (like the E3D V6) that are themselves made of metal. They can withstand high temperatures and fit most printers. Be prepared for the fact that the nozzles will have to be changed frequently, because the metal filament is very abrasive.

You will also need to take care of the final finishing of the surface (cleaning, grinding, oiling, waxing or priming) so that the printed metal object shines as it should.

How much is metal filament for 3D printing?

And what about metal filament for 3D printing? - you ask. Here are some examples:

  • A 500-gram BFSteel and BFBronse coil from Bestfilament costs 1600–1800 ₽
  • ColorFabb's 750 gram Bronzefill spool is $56.36
  • ColorFabb's 750 gram Copperfill spool is $56.36
  • Protopasta's Polishable Stainless Steel PLA Composite is $56 for 56 grams
  • Protopasta's Rustable Magnetic Iron PLA Composite is $34.99 for 500 grams

Industrial Metal 3D Printing

But what if you want better results or even full metal 3D printing? Should a real "metal" 3D printer be purchased for business needs? We wouldn't recommend it - unless you're going to be doing it every day. A professional metal 3D printer is expensive: EOS or Stratasys devices will cost you 100-500 thousand dollars. In addition, the costs will be even greater, since you will have to hire an operator, a worker to maintain the machine, as well as to finalize the printouts (polishing, for example). Just a note: In 2016, an affordable metal 3D printer didn't exist.

Reducing Metal 3D Printing Costs

If you are not going to open a metal 3D printing business, but still need a professionally 3D printed metal part, it is better to contact the appropriate company that provides such services. 3D printing services like Shapeways, Sculpteo and iMaterialise offer direct metal printing. They currently work with the following metal materials in 3D printing:

  • aluminum
  • steel
  • brass
  • copper
  • bronze
  • sterling silver
  • gold
  • platinum
  • titanium

If you are a jeweler, you can also order wax models for casting in precious metals. If we talk about wax models, then in most cases it is they (with subsequent melting) that are used when printing with metals (including gold and silver). Not all orders are carried out directly by these firms. They usually turn to other metal 3D printing companies to complete the order. However, the number of such services around the world is growing rapidly. In addition, metal 3D printing techniques are becoming more and more common in companies that offer such services.

The reason big companies love 3D printing so much is that it can be used to build fully automated lines that produce "topologically optimized" parts. This means that it is possible to fine-tune the raw materials and make the components thicker only if they must withstand heavy loads. In general, the mass of parts is significantly reduced, while their structural integrity is preserved. And this is not the only advantage of this technology. In some cases, the product turns out to be significantly cheaper and affordable for almost everyone.

Please note that metal 3D printing requires special CAD programs for modeling. It is worth paying attention to the recommendations of Shapeways - 3D printing metal guidelines. To delve further into the topic, check out Statasys’ information on related 3D printers and the nuances of metal 3D printing.

Here are some examples of Benchy test model prices for metal 3D printing:

  • Metal plastic: $22.44 (former alumide, PLA with aluminum)
  • Stainless steel: $83.75 (plated, polished)
  • Bronze: $299.91 (solid, polished)
  • Silver: $713.47 (solid, mirror polished)
  • Gold: $87.75 (gold plated, polished)
  • Gold: $12,540 (solid, 18K gold)
  • Platinum: $27,314 (solid, polished)

As you might expect, solid metal 3D printing prices are quite high.

Metal 3D printing. Applications

GE LEAP aircraft engine parts 3D printed at Avio Aero (Photo: GE)

There are several industries that already use 3D printers to make everyday objects - you may not even know that these objects are printed.

  • The most common case is surgical and dental implants, which in this design are now considered the best option for patients. Reason: they can be tailored to individual needs.
  • Another industry is jewelry. Here, most manufacturers have abandoned resin 3D printing and wax casting, switching directly to metal 3D printing.
  • In addition, the aerospace industry is becoming more and more dependent on 3D printed metal objects. The Italian company Ge-AvioAero was the first to do all-metal 3D printing. It manufactures components for LEAP aircraft engines.
  • Another industry targeting metal 3D printing is the automotive industry. BMW, Audi, FCA are seriously considering this technology, not only for prototyping (3D printing has been used for this for quite some time), but also for making real parts.

Before metal 3D printing really takes off, however, there are some hurdles to overcome. And first of all, this is a high price, which cannot be made lower than during molding. Another problem is the low production speed.

3D metal printing.

Technologies

Most metal 3D printing processes start with an “atomized” powder

You can talk a lot about “metal” 3D printers, but their main problems remain the same as any other 3D – printers: software and hardware limitations, material optimization and multimateriality. We won't talk too much about the software, we'll just say that most of the major specialized software companies, such as Autodesk, SolidWorks and solidThinking, try to emphasize as much as possible the fact that as a result of the 3D metal printing process, you can get any shape you want.

In general, printed metal parts can be as strong as parts made by traditional processes. Parts made using DMLS technology have mechanical properties equivalent to casting. In addition, the porosity of objects made on a good "metal" 3D printer can reach 99.5%. In fact, manufacturer Stratasys claims that 3D printed metal parts perform above industry standards when tested for density.

3D printed metal can have different resolutions. At the highest resolution, layer thickness is 0.0008 - 0.0012" and X/Y resolution is 0.012 - 0.016". The minimum hole diameter is 0.035 - 0.045″. Let's, however, consider what metal 3D printing technologies are.

Metal 3D Printing Process #1:

Powder Bed Fusion

The metal 3D printing process that most relevant large companies use today is called Powder Bed Fusion. This name indicates that some source of energy (a laser or other energy beam) melts an "atomized" powder (i.e., a metal powder that is carefully ground into spherical particles), resulting in layers of a printed object.

There are eight major manufacturers of metal 3D printers in the world that already use this technology; while we are talking here, there are more and more such companies. Most of them are in Germany. Their technologies are called SLM (Selective Laser Melting - selective laser fusion) or DMLS (Direct Metal Laser Sintering - direct metal laser sintering).

Metal 3D printing process #2:

Binder Jetting

ExOne 3DP prints metal objects by binding the powder before firing it in a forge (photo: ExOne)

Another professional approach that also uses a powder base is called Binder Jetting. In this case, the layers are formed by gluing metal particles together and then sintering (or fusing) them in a high-temperature furnace, just like it is done with ceramics.

Another option, which is also similar to working with ceramics, is mixing metal powder into metal paste. A pneumatically extruded 3D printer (similar to a syringe bioprinter or an inexpensive food printer) forms 3D objects. When the required shape is reached, the object is sent to the furnace, i.e. in the mountains This approach is used in the Mini Metal Maker, apparently the only inexpensive "metal" 3D printer.

Metal 3D printing process #3:

Metal Deposition

It may seem that the only 3D printing process that is left out of working with metals is layer-by-layer deposition. This is not entirely true. Of course, on some desktop device, simply fusing metal threads onto the base will not work. However, very large steel companies can do it. And they do. There are two options for working with "metal surfacing".

One is called DED (Directed Energy Deposition) or Laser Cladding. Here, a laser beam is used to melt the metal powder, which is slowly released and solidifies as a layer, and the powder is fed using a robotic arm.

Usually the whole process takes place in a closed chamber, but in the MX3D project, conventional 3D printing techniques were used to build a full-sized bridge. Another option for metal fusion is called EBAM (Electron Beam Additive Manufacturing - additive electron beam technology), which is essentially soldering, in which a very powerful electron beam is used to melt 3 mm titanium wire, and the molten metal forms very large finished structures. As for this technology, its details are known so far only to the military.

Metal 3D printing. Metals

3D Printing Metal #1: Titanium

Pure titanium (Ti64 or TiAl4V) is one of the most commonly used metals for 3D printing and is definitely one of the most versatile, strong and lightweight. Titanium is used both in the melting process in a preformed layer and in the process of spraying a binder and is used mainly in the medical industry (for the manufacture of personal prostheses), as well as in the aerospace industry, automotive and machine tools (for the manufacture of parts and prototypes). But there is one problem. Titanium is very reactive and explodes easily in powder form. Therefore, it is necessary that titanium 3D printing takes place in a vacuum or in an argon environment.

3D Printing Metal #2: Stainless Steel

Stainless steel is one of the cheapest 3D printing metals. At the same time, it is very durable and can be used in a wide range of manufacturing and even artistic and design applications. The type of steel alloy used also contains cobalt and nickel, is very difficult to break, and has a very high elasticity. Stainless steel is used almost exclusively in industry.

3D Printing Metal #3: Inconel

Inconel is a superalloy manufactured by Special Metals Corporation, its registered trademark. The alloy consists mainly of nickel and chromium and is very heat resistant. Therefore, it is used in the oil, chemical and aerospace (for black boxes) industries.

3D Printing Metal #4: Aluminum

Due to its lightness and versatility, aluminum is very popular in 3D printing. Aluminum alloys are commonly used.

3D Printing Metal #5: Cobalt-Chromium

This alloy has a very high specific strength (i.e. strength divided by density, which generally indicates the force required per unit area to break). It is most commonly used in the manufacture of turbines, dental and orthopedic implants, where 3D printing has become the dominant technology.

Metal for 3D printing №5. Copper and Bronze

With few exceptions, copper and bronze are used in wax melting processes, rarely in layer melting. The fact is that these metals are not very suitable for industry, they are more often used in the manufacture of works of art and crafts. ColorFabb offers both metals as the basis for a special metal filament.

Metal for 3D printing №6. Iron

Iron, incl. magnetic, also mainly used as an additive to PLA-based filaments, which are produced, for example, by ProtoPasta and TreeD.

Metal for 3D printing №7. Gold, silver, and other precious metals

Most preformed-layer companies can 3D print precious metals such as gold, silver, and platinum. Here, along with the preservation of the aesthetic properties of materials, it is important to achieve optimization of work with expensive starting powder. Precious metal 3D printing is required for jewelry, medical applications and electronics.

Metal 3D printing. Printers

Do not hesitate - the purchase of a metal 3D printer will not go unnoticed for your budget. It will cost at least 100-250 thousand dollars. Here is a list of a variety of "metal" printers, some of which can be found in firms providing 3D printing services.

Metal 3D Printer #1:

Sciaky EBAM 300 Metal Filament Printing

If you need to print really large metal structures, Sciaky's EBAM technology is your best bet. By order, the device can be built in almost any size. This technique is used mainly in the aerospace industry and the military. The largest of Sciaky's serial printers is the EBAM 300. It prints objects in a volume of 5791 × 1219 × 1219 mm.

The company claims the EBAM 300 is also one of the fastest industrial 3D printers on the market. A three-meter-sized titanium part for an aircraft is printed on it in 48 hours, while the material consumption is about 7 kg per hour. In general, forged parts that usually take 6-12 months to complete can be made in 2 days with this 3D printer.

Sciaky's unique technology uses a high energy electron beam that melts a 3mm titanium rod at a typical melting rate of 3 to 9 kg per hour.

Metal 3D Printer #2:

Fabrisonic UAM - Ultrasonic 3D Printing

Another way to print large metal parts is UAM (Ultrasound Additive Manufacturing Technology) from Fabrisonic. The devices of this company are three-axis CNC cutters, to which welding heads are added for the additivity of the process. The metal layers are first cut and then ultrasonically welded. The largest Fabrisonic 7200 printer operates in a volume of 2 x 2 x 1.5 m.

#3 Metal 3D Printer:

Concept Laser XLine 1000 Metal Powder 3D Printing

modeling - 630 × 400 × 500 mm, and itself the size of a house.

Its German company, one of the main suppliers of 3D printers for aerospace giants like Airbus, recently introduced a new device, the Xline 2000.

This equipment uses two lasers and the working volume is 800 × 400 × 500 mm. Uses LaserCUSING laser technology (a variant of selective laser fusion) from Concept Laser, which allows you to print alloys of steel, aluminum, nickel, titanium, precious metals and even some pure substances (titanium and stainless steel).

Metal 3D printing. Services

There are more than 100 companies worldwide offering metal 3D printing services. We list the most popular services for consumer needs.

#1 Metal 3D Printing Service: Shapeways

The world's most popular 3D printing service, Shapeways offers two types of services. As a consumer, you can choose from a wide range of professionally designed objects, customize them, and then have them printed to your specifications. Like other 3D printing services, Shapeways offers a platform for designers to sell and print their work. Shapeways is also a good place for rapid prototyping: customers benefit from industrial-grade printers (EOS, 3D Systems) and personal technical support.

3D printing metals: aluminium, brass, bronze, gold, platinum, precious metal plating, silver, steel. There are also wax molds for jewelry purposes.

Metal 3D Printing Service #2: Sculpteo

Like Shapeways and i.materialise, Sculpteo is an online 3D printing service that allows anyone to upload 3D models and send them for fabrication in a wide range of materials. Like its competitors, Sculpteo provides a platform for hobbyists and professionals to showcase and sell their designs. The stable of Sculpteo printers includes highly professional machines from 3D Systems, EOS, Stratasys and ZCorp. Extensive technical documentation will help identify design flaws and select the right material for the project.

3D printing metals: alumide (plastic with aluminum particles), brass, silver.

Metal 3D Printing Service #3: iMaterialise

Materialise is a company that works with industrial clients to prototype 3D printed products. For casual users and designers, Materialize offers an online 3D printing service called i.materialise. As with Shapeways, this service allows anyone to upload their 3D designs and print them out. Once an object has been uploaded and successfully printed, a designer can list it for sale either in the gallery of the i.materalise online store or by embedding some code into their site.

3D printing metals: alumide (plastic with aluminum powder), brass, bronze, copper, gold, silver, steel, titanium.

Metal 3D Printing Service #4: 3D Hubs

Through 3D Hubs, you can search for individuals and businesses that offer 3D printing services in your area, upload STL files (which are immediately assessed for defects), and contact directly with service providers to get the job done. The online 3D printing service also allows you to sort offers by materials, customer rating, distance and many other parameters. Whatever object you wish to print, chances are there is someone nearby who can do it. A significant number of materials can be printed in industrial quality, such materials have an HD mark in the search field.

3D printing metals: aluminium, bronze, cobalt-chromium, stainless steel, titanium.

Source

Tags:

Metal 3D Printing, Metal 3D Printing Process, Metal 3D Printing Industry, Metal 3D Printing Materials, Metal 3D Printer, Fasonic EBAM 300 , Concept Laser XLine 1000

how metal is printed on a 3D printer

Contents:

  1. Metal printing on a 3D printer
  2. How 3D technologies work
  3. Two basic methods
  4. Video

Metal printing on a 3D printer (two main technologies)

The introduction of innovative technologies opens up new opportunities in various fields of human activity. A modern 3D printer for printing on metal allows you to print high-precision structural elements that are in demand in the space, engineering, and aviation industries.

How 3D technologies work

The production of 3D parts is made using different methods of melting metal powder (using a laser). But the basic principle of operation remains unchanged, so any 3D printer prints with metal in several stages, these are:

  • filling the build chamber with an inert gas to minimize the oxidation of the source material;
  • heating to the temperature required for the production process.
  • powder distribution on the surface of the build platform;
  • 3D scanning of the cross section of the starting material with a laser beam;
  • melting and sintering of particles, which makes it possible to obtain a hard layer;
  • shift of the platform by the amount of the obtained layer for applying the next one (until the object formation is completed).

The moment the metal laser 3D printer completes the process, the product is completely covered in powder. Therefore, until the chamber cools down completely (to avoid deformations), the object on the platform is fixed by the support area.

Two main methods

A modern metal 3D printer can use one of the two most common technologies - selective laser beam melting (SLM) or direct laser sintering (DMLS). Among the main differences between the methods, the principle of gluing the component should be mentioned:

  • SLM - occurs as a result of complete melting of the powder;
  • DMLS - individual particles are sintered (at lower temperatures compared to SLM) without passing into a liquid substance.

Unlike traditional casting or stamping, DMLS allows objects to be printed without internal stress. This ensures good technical characteristics of the parts. Today, manufacturers offer models that can use several melting options at once.

Among other techniques for bonding powder particles, mention should be made of the UAM (additive ultrasonic) or EBM (electron beam) melting process. Modern equipment - an industrial 3D metal printer is produced by Markforged, ExOne, AurLabs, HP Metal Jet, Stratasys, MX3D, Digital Metal, 3DSLA.


Learn more