3D printed monster manual


An artist created 3D models of every D&D monster, and they’re all free

For more than five years, one man has been creating 3D models of every single monster in Dungeons & Dragons’ 5th edition, and giving away those digital files for free, so people with 3D printers can make them at home.

Miguel Zavala’s art project consists of more than 1,900 digital files, and he has nearly 3,000 paying subscribers supporting his work on Patreon. Polygon talked with Zavala about his work, and how (for the most part) he’s been able to avoid the ire of D&D’s publisher, Wizards of the Coast.

Zavala says he studied 3D modeling in college, but after a stint in the advertising industry he left it all behind. That’s until five years ago, when his wife inspired him to make a hobby of creating digital models for his own 3D printer. After getting a good response on Reddit, he started taking commissions for custom figures. Eventually that income became enough to pay the rent, he quit his day job to work at 3D modeling full time.

“I’ve made almost 2,000 models so far” Zavala said, “covering all of the D&D books all the way up to [Mordenkainen’s Tome of Foes]. It’s just been a hell of a ride.”

The income from his Patreon, where Zavala still does loads of custom commissions for his patrons and other D&D-adjacent work, now covers well more than just his rent. He also sells printed models of some of his minis online, but says the income from those is nominal at best.

Is the publisher of D&D OK with this? Zavala says it is, now that he’s made some changes to his process.

A demonic alchemist that Zavala designed for one of his patrons.Photo: Miguel Zavala

Five years ago, Zavala says, Wizards actually cracked down on his project. All of his models were pulled offline for a time. That’s because he was using another online platform to host them, and the fine print on that website stated that the platform holder would automatically assume rights to his creations. Wizards didn’t like that, so Zavala switched over to Shapeways, which has different rules for creators, and he was allowed to resume his work.

“I reached out to them,” Zavala said, “and very honestly, it was just like, ‘Hey, I’m not trying to compete with you guys. I’m not trying to do anything like that. It’s just some people don’t have access to game stores, and some folks like to have a little extra creative balance in their games, and I make these things available for free.’ [...] Once they understood that I wasn’t trying to make an easy buck off of this, they immediately opened up.”

Portions of D&D content are available to the public through the Open-Gaming License set up by Wizards. The publisher also has a formal policy on fan-created content. Zavala says he’s careful to follow those rules. All of the files themselves are available for free, and certain monsters — like named characters from D&D lore and other items that fall outside of the OGL — are only available as free digital downloads. You can find them all spread out across two different accounts on Shapeways. The first is called The DM Workshop, and the second is his own personal account.

“Wizards has been in contact with Miguel ‘mz4250’ Zavala,” a spokesperson at Wizards confirmed for Polygon. “He does nice sculpts, and we appreciate the creativity he brings to the hobby! As long as he’s following our Fan Policy and our [Open Game License], we don’t take issue with what he’s doing. D&D always encourages storytellers and creators to share what they are making with the community.”

The very first 3D model that Zavala made more than five years ago. The updated version, created just this year, is at the top of this story.Photo: Miguel Zavala

Wizards has its own officially licensed lines of pre-painted miniatures, which are sold primarily in collectible blind boxes. There’s also a smaller line of unpainted miniatures, but only about 30 models are currently being produced. While they’re all very durable and high quality, there’s really nothing like the variety that Zavala’s free files can offer.

Part of the reason that his work has become so popular is because 3D printers have improved and become cheaper over the last few years. For at-home builds of single miniatures, Zavala recommends something like the Elegoo Mars or the Anycubic Photon, both of which you can find on Amazon for around $250. Zavala isn’t the only one doing work like this either. Other 3D modelers he recommends for D&D minis include Mia Kay and Duncan “Shadow” Luca.

“I’m just going to continue improving my skills and, as the technology changes, I’ll adapt with that,” Zavala says. He’s spending lots of time converting his digital library into new file types that will be useful in virtual reality and augmented reality applications to come.


Elegoo Mars 2 3D printer

Prices taken at time of publishing.

  • $300 at Amazon

Vox Media has affiliate partnerships. These do not influence editorial content, though Vox Media may earn commissions for products purchased via affiliate links. For more information, see our ethics policy.

Check Out This Library of Over 200 3D Printed Dungeons & Dragons Monsters - 3DPrint.com

When Gary Gygax and Dave Arneson created the legendary Dungeons & Dragons (D&D) tabletop role playing game it is unlikely that they had any idea that it would become unquestionably the most popular RPG of all time. For over forty years the game has been a cultural touchstone for multiple generations of gamers and fans and has even endured and thrived in the age of the video game. That endurance has a lot to do with the themes of the game itself, thanks to its liberal use of modern fantasy mythology and iconography, but it is also due to the game’s ability to reinvent itself regularly. While not every new iteration of D&D or new game mechanic has been met well with fans, the evolution into a more visually-based game that allows users the option of using grid maps and mini figures has generally been a welcomed change.

Zavala carries all of his minis around in a giant tool box.

When avid D&D player and Shapeways user Miguel Zavala was encouraged by his fiancée to pick up 3D printing as a hobby, at first he wasn’t sure it was for him. He had already worked with 3D printing while he was in college and never really pursued it after he graduated and got a job. But after finding that his local library offered 3D printing services he decided to go ahead and give it a try. As a fan of D&D, naturally, the first thing that he 3D sculpted was a Black Dragon miniature that could be used in his next game, and by the time it had finished printing he was hooked. In no time he had his own Printrbot Simple at home, and decided to 3D sculpt and 3D print all of the hundreds of creatures from the game’s Monster Manual.

“I actually started playing [D&D] when I was 17 and haven’t stopped since. While I’ve grown up a plenty, D&D is the one thing that I will always feel like a kid around. I’m just as excited now when I sit down and start rolling the dice as I was when I was a teen. I love this game, and it makes me feel absolutely fantastic knowing I’m helping improve the experience for fellow gamers like myself,” Zavala told me.

Metallic Dragons
Red Dragon
Beholders

The 350 page Monster Manual is one of the three core rule books that are required to run a D&D campaign, and it is packed full of just about every fantasy creature that you can think of, and quite a few that you probably couldn’t (I’m looking at you, Owlbear) so this was quite the challenging project that Zavala took on. So far he’s 3D printed well over 200 of the monsters since he started back in the fall of 2014. The monsters range from role playing game mainstays like his incredibly detailed dragons to banshees, giants, demons, ghosts, specters and elementals. But he’s also 3D printed plenty of the odd, weird and ridiculous creatures that the game has to offer, like the Flame Skull, which is exactly what it sounds like. Naturally he’s printed what is probably one of the most iconic and weird D&D creature ever, the floating eyeball monster called a Beholder. And yes hardcore RPG fans, he’s also 3D printed the Dread Gazebo, because of course he would.

Owlbear
Flaming Skull
Dread Gazebo

Zavala gets the reference materials for all of his designs directly from the source, the 5th Edition Dungeons & Dragons Monster Manual. All of the 3D models are designed in Blender, which he then sends over to Cura to prepare for 3D printing. Aside from the first few dozen models, all of his miniatures were 3D printed on his Printrbot Simple in PLA. Zavala then hand paints all of the minis using standard acrylic model paints. He’s uploaded a huge gallery of all of his models onto Imgur, and all of the 3D models can be downloaded from Shapeways. He originally had the models up on Thingiverse, but it turns out that Wizards of the Coast, the owners of Dungeons & Dragons, weren’t crazy about someone making their own D&D minis.

“Wizards of the Coast requested my models taken down from Thingiverse. At first I was a bit surprised as I wasn’t trying to make money off of this or anything. Thankfully when I reached out to them and explained my intentions, which were just to share my files so that fellow players could have just as much customization in their games as I have, they were pretty fair. They just preferred the models were on a site they had an agreement with. So that’s why all my stuff is now on Shapeways. So long as I don’t try to sell any of their IP I can post away here,” Zavala explained.

Tarrasque
Displacer Beast
Frost Giant

Zavala’s only goal with his project is is to give other D&D gamers the option to completely customize their own games and have as much fun playing as he has all these years. He plans to keep going and continue to design and 3D print new models regularly, until he runs out at least. But even with the two hundred plus figures that he has already made the sixteen year Army vet isn’t even close to 3D printing all of the monsters, races and creatures found in the game, so I hope he has a lot of filament handy.  Let us know your thoughts on this story in the 3D Printed Dungeons and Dragons forum on 3DPB.com.

Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.

Tagged with: 3d printable miniatures • Beholder • blender • Cura • D&D • Dave Arneson • dragons • Dread Gazebo • dungeons & dragons • Gary Gygax • imgur • Miguel Zavala • Monster Manual • role playing games • role playing games. 3d printed miniatures • rpg • shapeways • tabletop miniatures • Wizards of the Coast

Please enable JavaScript to view the comments powered by Disqus.

Once again about the use of 3D technologies

3D Printer in the Construction Industry

A group of engineers from the British University of Loughborough, working under the direction of Dr. Sungwu Lim, managed to create a unique cement composition that allows printing products of any shape: convex, cornerstone, curved, cubic.

Researchers abandoned the use of laser sintering technology and digital light processing. Instead, they returned to the origins of 3D printing with a slightly modified fusing technology.

Advanced cement formula is extruded, which greatly simplifies construction work, as it eliminates the need for formwork. Ready-made concrete figures are easy to adjust and finish.

The experiments of British engineers did not go unnoticed. Their idea aroused the keen interest of scientists from the University of Southern California. They suggested using huge 3D printing machines directly on construction sites.

At the moment, a project called Contour Crafting has been sent to the US Patent Office, on the basis of which it is planned to assemble a huge printer that can print complete houses: not only load-bearing walls, but also wiring along with plumbing.

Jewelry Sphere

The main advantages of jewelry 3D printers are ultra-high printing precision and excellent surface quality. We emphasize once again that thanks to the technologies used, the printed three-dimensional models are exceptionally smooth and do not require additional processing or adjustment.

Now about a dozen specialized (CAD) programs have come to your aid, allowing you to virtually work out all the smallest details of a future gold or silver jewelry on a computer screen. And if we add the capabilities of modern 3D scanners, which are also available in our company, to the capabilities of CAD programs, then the work of a jeweler will be even more simplified.

Photo - a few examples of 3D printing models of future jewelry, pay attention to the complexity and detail of the elaboration of the smallest elements.

Automotive

Local Motors uses 3D printing to produce their Strati cars.

Local Motors hopes to start selling their car, called the Strati, next year. The car, which will be produced in small series, still has to pass crash tests and overcome a number of other obstacles before this happens. They report that the finished car, which receives the powertrain, suspension and other parts from Renault, will cost in the region of $18,000 - $30,000, including the production of printed parts, which cost more than $5,000.

But the use of 3D printers is not limited to designs or extravagant cars. Supercar Koenigsegg One:1 with 1,341 hp uses some 3-D printed parts, including a turbo assembly and a titanium exhaust tip, which take only three days to produce, but this reduces their weight by half a kilo. Race car designers Nissan Motor Corp. Delta-Wing uses 3-D printing to create brake radiators, air intakes and transmission side covers.

Among more mainstream production vehicles, the next generation of the Mercedes-Benz S-Class due in 2018 will feature 3-D printed interiors, including air vents and speaker grilles, British website AutoExpress told in August. chief designer of Mercedes.

Medicine

Prostheses - recently in medicine, prostheses made on 3d printers have become widespread, which take into account the individual characteristics of a person as much as possible and can be quite complex in design and withstand heavy loads;

Skull copy – using special scanners, it became possible to reproduce an exact copy of a human skull and use part of this copy as an implant;

Intervertebral discs - thanks to a 3D printer that works with materials containing stem cells, it is possible to restore damaged areas of the spine or even create new, artificial discs;

3D models and crowns - using 3D printing technologies, special 3D models are produced that help in surgery, and dental crowns are also made;

An operation has now been performed to implant a piece of the skull into the patient. This implant was made using a 3d printer, but before that, a model of the patient's skull was created thanks to a 3d scanner, which is also widely used. The advantage of this model is that it takes into account all the uniqueness of the structure and shape of the patient's skull, which means it fits him better. Such a model was made for two weeks after scanning, it was made up of 23 bones, which are part of the human skull. All even the smallest details are taken into account. Such implants are currently helping a large number of people who have suffered from traumatic brain injuries.

In addition to implants, 3D printing is also used to make prostheses for various parts of the human body. These prostheses take into account the individuality of the structure and the uniqueness of human needs, and therefore are very comfortable. In these prosthetic systems, microcavities are specially left, thanks to which the patient's own healthy tissue cells are able to move in them. Thus, faster adaptation to the prosthesis is carried out.

Aircraft industry

In 1995, the Northwest Polytechnic Institute of China (NPU) launched the Laser Additive Manufacturing (LAM) research program to develop metal 3D printing devices using titanium alloys, superalloys, and stainless steel.

At present, LAM developments are widely used in the design and manufacture of Chinese military aircraft, in particular, the J-15 carrier-based fighter, the J-16 fighter-bomber, the J-20 stealth fighter and the latest fifth-generation fighter J-31.

In addition to the military, 3D printers are also being used in China's civil aviation.

In 2013, in the laboratory of the already mentioned NPU institute, a 5-meter central wing spar was printed for the promising Comac C-919 passenger aircraft, which was supposed to enter commercial operation in 2016.

Thanks to the use of 3D technologies, it was possible to significantly reduce the weight of the spar - it weighs only 136 kg (a similar part obtained by forging - 1607 kg). At the same time, material savings amounted to 91.5%, and tests have shown that 3D printed parts behave at least as well as those obtained by traditional methods.

FOOD

According to most films, our future is scary and wonderful at the same time. What will we see? What do we do? What will we eat? Since microwaves are radiation to many of us, we are constantly inventing new ways of cooking. Now that the world has learned about 3D printing, it is only natural that this technology will be used for cooking and make this process easier, or at least more fancy. If you believe the Star Trek movie, then 3D printing will be the only way to cook food in 2,000 years. So let's go over the list of eleven different food printing machines to get an idea of ​​the near future of food:

1. 3D Systems ChefJet Printer

The ChefJet 3D premiered at CES in January of this year. The 3D printer produces some of the most amazing 3D prints I've ever seen, and they taste just as good as they look. The ChefJet was originally developed by a small firm, Lab Sugar, founded by a married couple of architects, Kyle and Liz von Hasseln.

To satisfy their sweet tooth, 3D Systems acquired a start-up and rebranded the company, emphasizing that this 3D printer is the ideal tool for restaurateurs, professional chefs. It is also a must for consumers who want to 3D print goodies in beautiful and decorative shapes that are even a pity to eat. ChefJet comes in two versions - standard and professional, which allows you to print in color. What's more, ChefJet prints just about any flavor that a modern food lab can create.

According to 3D Systems, the ChefJet is scheduled to be released in "the second half of 2014" for less than $5,000, the only problem is that the second half of 2014 is almost over and the printer still hasn't hit store shelves. Unfortunately, 3D Systems revealed during its Q3 financial report that many of the printers scheduled for release this year never saw the light of day, so we won't see the ChefJet outside of shows and blogs until next year.

2. Natural Machines Foodini Printer

Although this list is not meant to be rated, Foodini ranks first alongside ChefJet in terms of how they attract public attention. With a marvelous marketing campaign and the ability to prepare savory meals, Natural Machines Foodini 3D Printer is the answer to the age-old question of healthy eating. Foodini users can cook with fresh ingredients, create a variety of pastas, and place them in reusable capsules, which are then printed in any 3D shape. By using freshly made pastas, there is an opportunity to opt for healthy, natural foods, as opposed to processed foods that are crammed with additives.

Natural Machines launched a Kickstarter campaign back in March of this year, but the goal was not met. And it's pretty amazing, as Potato Saladearned got 554928% of its Kickstarter goal. Being confident in their idea, Natural Machines does not give up. Instead, they are completing their funding phase and planning to mass-produce their printers in the second half of 2015 for a retail price of around $1,000. I would like to point out that Foodini does not cook the food it prints, so you need to either print the food that is already edible or cook it. after printing.

3. f3d 3d printer designed by smart students from England

is able to use up to five different extruders, and prepares his food prints using a 1400W halogen oven. The students were able to print out three different ingredients—dough, tomato sauce, and cheese—and make one dish: a tiny pizza. The total cost of the components is about $1900.

4. SMRC Food Printer for NASA

What associations do most people have when they hear the word NASA? Food. NASA has been making strides in food science ever since they sent the Tang drink into orbit in 1962 with the Friendship 7 spacecraft. Texas, where Senior Mechanical Engineer Anyan Contractor is working on a food printer for astronauts bound for Mars. Using raw ingredients packaged in capsules, SMRC's food printer can combine different individual ingredients to 3D print a wider variety of food. The firm has already printed proof of its concept, a pizza that was ready in just 70 seconds after printing. The next step for the SMRC is to add nutrients to their meals so that one day, the Mars colonists will be provided with the vitamins and minerals they need to fight the space monsters.

5. Choc Creator Printer by Choc Edge

There are a number of companies on the market that 3D print chocolate. They can either print sweets for you or sell you their own 3D chocolate printers. Choc Creator by Choc Edge is one of the first chocolate 3D printers on the market. Designed by Dr. Liang Hao in 2012, Choc Creator can draw most of the 2D shapes you can think of individually or on cakes and cookies. And with some skill, you can create entire 3D layers. Choc Creator II is currently available for a discounted price of £3200.

6. Extruder for cakes and chocolate from ZMorph

As you already understood, buying a food 3D printer is not so easy. With the exception of the Choc Creator, commercial food 3D printers really aren't on the shelves yet. Thus, you have to either wait or make them yourself. You can also buy a "regular" desktop 3D printer and make it print with something edible. Some printer makers have already picked up on the idea, like ZMorph, who make a versatile 3D printer with interchangeable tools, including a pasta extruder that can 3D print chocolate and dough.

7. Structur3D's Discov3ry Extruder

If you already have a 3D printer but want to use it for food purposes, you should consider Structur3d's Discov3ry Extruder, which isn't really available online yet. store. Discov3ry is a versatile paste extruder. The campaign to fund it has already been successfully launched on Kickstarter. In no time, you will be able to meet all your printing needs with paste, namely chocolate, icing, or other viscous but less edible materials such as silicone and clay. If you don't feel like waiting, you can build your own versatile grazing extruder, following the example of designer Richard "RichRap" Horne.

8. Dovetailed Fruit 3D Printer

If you're picky enough that you don't want to eat pasta, then wait until Fruit 3D Printer comes out. Its creators have come up with a way to fill a sodium gel with flavors that mimic strawberries, after which the entire mixture is placed in a solution of calcium chloride to obtain a product that looks like raspberries. After an initial flurry of media coverage and prints that look more like jelly than real fruit, the firm is never heard from again. However, this is an innovative approach to the art of food printing.

9. TNO's 3D Everything Printer

TNO (or "Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek", I hope you haven't broken your tongue) has come a long way in the field of food printers. This Dutch research group has been working on 3D food printing since 2012 and treats the topic as a major technological breakthrough, not a kitchen fantasy.

TNO believes that these printers can help humanity print food according to the individual needs of each individual. Using historical and physiological data, the printer can prepare food that contains the right amount of nutrients, and at the same time uses flavors according to the user's mood, using alternative sources of nutrients: algae, beet leaves and even insects.

TNO is already partnering with Barilla 3D printing 15-20 pasta every two minutes. They have also teamed up with Chloé Rutzerveld and 3D printed biscuits made from dried fruits, vegetables, nuts and seaweed filled with yeast, bacteria and germinated seeds. Tasty!

10. Goop Printer by Biozoon

If you're under 60, chances are you won't see this printer any time soon. The German company Biozoon is developing mold printing from a nutrient mash specifically for elderly residents of a nursing home. With financial support from the EU, Biozoon plans to complete the 3D food printer by 2015. Using 48 nozzles, liquefied food and a thickening agent, this printer will recreate the shape and taste of something hard to swallow, like a chicken wing, but such a product will simply melt in the mouths of old people. Moreover, such food will be full of nutrients, so necessary to maintain their health.

11. The original food printer from Fab@Home

It is possible that the entire food printer industry began with Fab@Home. The fact is that the creators of this device, Hod Lipson and Evan Malone from Cornell University, just decided to experiment with the introduction of rapid prototyping to the masses at a low price, and the instructions were posted in the public domain. With this, their task was completed. Since 2010, their lab, along with local partners such as the French Culinary Institute, have been among the first to experiment with food extrusion: 3D baked livers with letters baked inside, spaceship-shaped scallops, chocolate, icing, cheese and more. . If it weren't for their creation, we might never have even seen 3D like this - non-printed cakes, chicken wing-shaped porridges, or small pizzas.

What associations do most people have when they hear the word NASA? Food. NASA has been making strides in food science ever since they sent the Tang drink into orbit in 1962 with the Friendship 7 spacecraft. Texas, where Senior Mechanical Engineer Anyan Contractor is working on a food printer for astronauts bound for Mars. Using raw ingredients packaged in capsules, SMRC's food printer can combine different individual ingredients to 3D print a wider variety of food. The firm has already printed proof of its concept, a pizza that was ready in just 70 seconds after printing. The next step for the SMRC is to add nutrients to their meals so that one day, the Mars colonists will be provided with the vitamins and minerals they need to fight the space monsters.

Weapons

For the first time the idea to print military weapons on a 3D printer appeared in the United States of America.

In May 2013, a video appeared on the Internet in which a man shoots from a printed mock-up of a Liberator pistol. It was 25-year-old Cody Wilson, head of Defense Distributed, which promotes the idea of ​​universal availability of 3D weapons.

Using a 3D printer, they printed firearms and uploaded the files of their work to the World Wide Web. Defense Distributed employees have already made magazines that hold more cartridges for the AR-15s rifle and the legendary Kalashnikov assault rifle (AK-47 modification). Also on their account is the manufacture of the lower part of the receiver, in which the bolt of a self-loading rifle AR - 15 is placed. You can attach the barrel and magazine to it, having received a finished weapon without any problems. No authorization is required to purchase parts in the USA. Now work is underway on a 3D printout of the entire rifle. In doing so, Cody and his team dealt a major blow to the American gun control debate. The discussion began in December, after twenty children and six adults were killed by assassins at a junior high school in Connecticut. The vast majority of Americans rallied to support government reform. This is a thorough check that will make it difficult for criminals to obtain weapons. However, this did not prevent Mr. Wilson from obtaining a federal license to manufacture and sell firearms.

More serious developments in the field of printing firearms on a 3D printer are being carried out in Austin, Texas. The project is led by Eric Macler, coordinator at Solid Concepts, a 3D printing company.

Erik Machler

Ten industrial 3D printers are installed at the Austin plant. Solid Concepts received a federal license to manufacture weapons, and now, using direct metal laser sintering technology, produces the Browning 19 pistol.eleven". Making a pistol takes up to 35 hours. Depending on which printer and materials are used. More than 1,000 shots have already been fired from the first printed pistol, Solid Concepts, while the company has created a second version of the Browning 1911 model.

FASHION

Another famous designer has started experimenting with 3D printing technology. And the results are simply amazing. Katherine Wales started her career in the fashion industry over 15 years ago. She has trained and collaborated with some of the most eminent professionals in the profession, including Jasper Conran, Jean Charles de Castelbajac, Oswald Boateng, Emmanuel Ungaro and Saint Laurent. However, she worked independently on her latest collection. The collection was born thanks to the innovative achievements in the field of additive technologies of the London College of Fashion. She combined all the models into a collection called "DNA Project", thanks to which, among other things, the designer touched the world of 3D printing and transferred her ideas to the creation of accessories.

The DNA Project is not entirely unique. The collection is the result of a synergy of haute couture, technology and science. As a result of this interaction, incredible models were born that embody the features and structure of human chromosomes. The DNA Project is almost entirely made up of separate and identical balls and structural components (through the use of 3D printing technology) that can create a wide variety of shapes.

FURNITURE

A graduate of the Royal Academy of Art in The Hague, Lillian van Daal was one of the first to develop a unique structure ideal for creating 3D printed furniture.

The designer took the cell structure of living organisms as a basis. A mixture of modern technology, creative genius, and the ability to visualize the finished result helped her create a Biomimicry soft chair printed with plastic filament. The finished product consists of a binding of soft and hard elements, thanks to which it provides a comfortable fit and stands out for its high strength and wear resistance compared to other furniture designs.

It is noteworthy that Lillian van Daal continues to work in this direction. The designer plans to replace polyamide with an environmentally friendly material to create truly safe furniture. It is possible that in the near future stands of the new Biomimicry brand will appear in furniture stores.

EDUCATION

The introduction of 3D printers into the school system is a progressive phenomenon. It contributes to the creation of new opportunities in the study and consolidation of many school subjects. For example, a teacher in a biology class can create a visual aid: some part of an animal skeleton, a human eye, and so on. Or prepare a model of a system of blocks for students for a physics lesson, details of various mechanisms.

ARCHITECTURE

Throughout twenty years of work in the field of computer-aided design, R. "Parta" Parthasarati meets a new client with the same question: "What problem can we solve for you?"
The usual answer is: "Accelerate time to market for our product."
With regard to architecture, Parthasarathy found that the two main causes of delays came down to a lack of theoretical study of the project and poor communication. Two years ago, he discovered 3D printing, a completely new technology that significantly reduces design time. It allows you to make an accurate three-dimensional physical model of the building and make it an important element in the work of every designer. Partha saw this as a great opportunity to improve understanding among all those involved in the project, increase efficiency and eliminate costly mistakes. Thus was born iKix, India's first architectural 3D printing service bureau.
Previously, all construction models were made by hand. Since this process is time consuming and expensive, architects only make the layout at the final stage of the project, just before the public presentation.
“iKix prints a 3D layout in an average of six to ten days, which is much faster than the month it takes to produce a similar layout by hand,” says Parta. “Let's say a 1,000-acre plot layout—including houses, schools, churches, golf courses, and more—we can build in six weeks versus five months of manual work. The time and cost savings become even more noticeable when plans change and the layout has to be adjusted on the fly.”
iKix uses the color Spectrum Z510 from Z Corp. The capabilities of this printer allow the architect and project manager to quickly obtain multiple copies of the layout - one each for the architect, client, general contractor, subcontractor and civil authorities. “A 3D printer is more than just a prototyping machine,” Parta says. – It really became one of the developer's tools. 3D printing is a breakthrough that I believe will determine the future of technical information exchange for the next two hundred years. Each project must be presented in 3D, and soon it will be so. I sincerely believe that all architects will work in 3D. iKix clients come here to implement more and more new projects in three-dimensional layouts. The benefits are undeniable."
Parta believes that infrastructure objects also need physical layouts. For example, when the authorities decided to build a highway interchange, it is necessary to plan traffic in all modes of its operation. The presence of a physical 3D model simplifies the solution of this problem.

MEDICATIONS

The US Food and Drug Administration has approved the use of 3D printed medicines for the first time. Aprecia Pharmaceuticals has received permission to manufacture tablets using 3D printing. The drug is used to prevent seizures in adults and children with epilepsy.

The tablet, called Spritam, contains a large dose of an anti-epileptic drug that dissolves in a small amount of water, which the manufacturer says should help patients with swallowing problems.

However, the big news is that this is the first time a 3D printed drug has been approved by the FDA (Food and Drug Administration), writes Business Insider.

Researchers are impressed with the potential of 3D drug printing. The technology makes it possible to create individual medicines with an accurate dosage for each patient.

3D printing can also be seen as an inexpensive way to produce drugs for developing countries. The main thing here is to prevent the production of illicit drugs, the recipe and chemical components of which can be obtained using the Internet.

It is worth noting that the FDA has long appreciated the benefits of 3D printing in medicine. The organization previously approved 3D printing of medical devices.

MUSICAL INSTRUMENTS

Olaf Diegel, a talented designer who is crazy about 3D printing, presents to your attention his new creation - incredibly beautiful musical instruments. As you may have guessed, many components of the drum kit and synthesizer were recreated using a 3D printer.

“I thought that the consumable that was used in the printing process would greatly affect the sound. Fortunately, this did not happen. Of course, there are some differences, but there is no particular distortion,” says Digel.

Source

Tags:

Printing cement, laser sintering, layer -by -layer, jewelry 3D printing, 3D prosthesis printing, 3D Printing Titan, Implant, 3D models, 3D models, 3D models, 3D models, 3D models, 3D models, 3D models, 3D models, 3D models. prosthesis printing, house printing, additive manufacturing, food printer,

3D-printed Moon landing pad prototype tested / Sudo Null IT News

It is almost impossible to imagine space exploration without using local resources. Lunar base projects were buried under the surface, sprinkled with soil or surrounded by printed walls. But less attention was paid to the buildings of the lunar cosmodrome - at best, flat areas are drawn in the illustrations. They will have a minus - the engine exhaust will corrode the surface and raise dust. To address these potential challenges, a team of students from ten U.S. universities and colleges, with support from NASA and 3D printing company ICON, designed, built, and successfully tested a large-scale prototype of the Lunar PAD airstrip.

Photo: ICON

In the summer of 2019, a team of students from the NASA L'SPACE Virtual Academy won a round of the 12-week NASA NPWEE Technology Concept Proposal course and received funding to develop their concept for protecting lunar landers from dust using robotic construction. The goals of both L'SPACE and NPWEE are to expand the pool of high-quality proposals of new concepts and technologies that can then be useful to NASA. In 2020, the team submitted a revised concept to an online technology readiness review and received funds to build and test a scale model. After spending hundreds of working hours consulting with NASA experts, the students went from idea to implementation of a model of the potentially important task of creating a safe reusable landing site for the Moon. In autumn, a scale model was built at Camp Swift, Texas, and successfully tested by a geophysical rocket engine in early March.

A team of students at work, photo ICON

The project, originally called the Dust Devil ("dust whirl"), is eventually called the Lunar Plume Alleviation Device ("Lunar device to soften the exhaust") or, for short, Lunar PAD (playing on what that in English "pad" also means "a platform for launch / landing"). Structurally, the Lunar PAD consists of two levels: the upper one is a flat platform with small slots for exhaust gases to drain.

Ready site with test rocket engine installed, photo ICON

The lower level combines load-bearing structures and flues for exhaust gases to the sides. A feature of the project is the use of 3D printing. First, a 3D construction printer forms a frame, which, as is often the case in additive manufacturing, uses complex surfaces and looks aesthetically pleasing.

Frame and student team, photo by ICONPrinting process, top view, photo by ICON

The printed frame is then filled with filler. The test mock-up used a cement-based material, but for lunar conditions, it would be logical to produce a hardening or sintering regolith building material in situ. The structure built is strong enough to withstand the takeoff and landing of the lunar modules, and produces less dust by diverting engine exhaust into the gas ducts.

Even at the construction stage, sensors were installed in the model to determine temperatures, loads and gas flow. In early March, a geophysical rocket team from Texas A&M University delivered a solid rocket motor to a test site. It was installed above the site, launched and looked at the information recorded by the sensors. The tests were successful - the Lunar PAD pad successfully withstood the takeoff / landing simulation, the data obtained do not contradict the calculated ones.

Inspection of the site after testing. Pay attention to the side along the edges, reflecting the exhaust up. Photo by ICON

The project has already received its first scientific publication in the AIAA SciTech Forum materials, and a very diverse group of college and university students scattered throughout the United States can take part in a full-fledged and successful scientific and technical project, potentially in demand in future projects moon bases.

It is also interesting to note that ICON, which provided the gantry 3D printer for the project, is also 3D printing houses and other structures. The company also received a contract from NASA last fall to research and develop a construction system that could be used on the moon. Under this contract and, potentially, other space projects, a special division of the company was created. The project was named "Olympus". And it's time to redo the freshly drawn renders - thanks to the efforts of the students who created the Lunar PAD, the depicted landing pads already look outdated.


Learn more